Advertisement

Moduli stabilization and cosmology of type IIB on SU(2)-structure orientifolds

  • Claudio Caviezel
  • Timm WraseEmail author
  • Marco Zagermann
Open Access
Article

Abstract

We consider type IIB flux compactifications on six-dimensional SU(2)-structure manifolds with O5- and O7-planes. These six-dimensional spaces allow not only for F 3 and H 3 fluxes but also for F 1 and F 5 fluxes. We derive the four-dimensional \( \mathcal {N} \) = 1 scalar potential for such compactifications and present one explicit example of a fully stabilized AdS vacuum with large volume and small string coupling. We then discuss cosmological aspects of these compactifications and derive several no-go theorems that forbid dS vacua and slow-roll inflation under certain conditions. We also study concrete examples of cosets and twisted tori and find that our no-go theorems forbid dS vacua and slow-roll inflation in all but one of them. For the latter we find a dS critical point with ϵ numerically zero. However, the point has two tachyons and eta-parameter η ≈ −3.1.

Keywords

Flux compactifications dS vacua in string theory 

References

  1. [1]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four-folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α’-corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    J. Louis and A. Micu, Type II theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    M. Ihl and T. Wrase, Towards a realistic type IIA \({T^6}/\mathbb {Z}_4 \) orientifold model with background fluxes. I: moduli stabilization, JHEP 07 (2006) 027 [hep-th/0604087] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [SPIRES].CrossRefGoogle Scholar
  16. [16]
    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    G. Villadoro and F. Zwirner, N = 1 effective potential from dual type- IIA D6/O6 orientifolds with general fluxes, JHEP 06 (2005) 047 [hep-th/0503169] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    T. House and E. Palti, Effective action of (massive) IIA on manifolds with SU(3) structure, Phys. Rev. D 72 (2005) 026004 [hep-th/0505177] [SPIRES].MathSciNetADSGoogle Scholar
  19. [19]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    P.G. Camara, A. Font and L.E. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    A.-K. Kashani-Poor and R. Minasian, Towards reduction of type-II theories on SU(3) structure manifolds, JHEP 03 (2007) 109 [hep-th/0611106] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    M. Graña, J. Louis and D. Waldram, SU(3) × SU(3) compactification and mirror duals of magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    I. Benmachiche and T.W. Grimm, Generalized N = 1 orientifold compactifications and the Hitchin functionals, Nucl. Phys. B 748 (2006) 200 [hep-th/0602241] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    M. Ihl, D. Robbins and T. Wrase, Toroidal orientifolds in IIA with general NS-NS fluxes, JHEP 08 (2007) 043 [arXiv:0705.3410] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    D. Cassani and A. Bilal, Effective actions and N = 1 vacuum conditions from SU(3) × SU(3) compactifications, JHEP 09 (2007) 076 [arXiv:0707.3125] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    A.-K. Kashani-Poor, Nearly Kähler reduction, JHEP 11 (2007) 026 [arXiv:0709.4482] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    D. Cassani, Reducing democratic type-II supergravity on SU(3) × SU(3) structures, JHEP 06 (2008) 027 [arXiv:0804.0595] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    M.P. Hertzberg, M. Tegmark, S. Kachru, J. Shelton and O. Ozcan, Searching for inflation in simple string theory models: an astrophysical perspective, Phys. Rev. D 76 (2007) 103521 [arXiv:0709.0002] [SPIRES].ADSGoogle Scholar
  30. [30]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [SPIRES].ADSGoogle Scholar
  33. [33]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    C. Caviezel et al., On the cosmology of type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [SPIRES].ADSGoogle Scholar
  36. [36]
    B.E.W. Nilsson and C.N. Pope, Hopf fibration of eleven-dimensional supergravity, Class. Quant. Grav. 1 (1984) 499 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    D. Lüst, Compactification of ten-dimensional superstring theories over Ricci flat coset spaces, Nucl. Phys. B 276 (1986) 220 [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    L. Castellani and D. Lüst, Superstring compactification on homogeneous coset spaces with torsion, Nucl. Phys. B 296 (1988) 143 [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    G. Aldazabal and A. Font, A second look at N = 1 supersymmetric AdS 4 vacua of type IIA supergravity, JHEP 02 (2008) 086 [arXiv:0712.1021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    A. Tomasiello, New string vacua from twistor spaces, Phys. Rev. D 78 (2008) 046007 [arXiv:0712.1396] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    A. Chatzistavrakidis, P. Manousselis and G. Zoupanos, Reducing the heterotic supergravity on nearly-Kähler coset spaces, Fortschr. Phys. 57 (2009) 527 [arXiv:0811.2182] [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  46. [46]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    C.M. Hull, Global aspects of T-duality, gauged σ-models and T-folds, JHEP 10 (2007) 057 [hep-th/0604178] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    M. Cvetič, T. Liu and M.B. Schulz, Twisting K3 × T 2 orbifolds, JHEP 09 (2007) 092 [hep-th/0701204] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    A. Bergman and D. Robbins, Ramond-Ramond fields, cohomology and non-geometric fluxes, arXiv:0710.5158 [SPIRES].
  51. [51]
    L. Covi et al., Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    L. Covi et al., de Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    A. Achucarro, S. Hardeman and K. Sousa, F-term uplifting and the supersymmetric integration of heavy moduli, JHEP 11 (2008) 003 [arXiv:0809.1441] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, arXiv:0911.2876 [SPIRES].
  55. [55]
    G.W. Gibbons, Aspects of supergravity theories, three lectures given at GIFT Seminar on Theoretical Physics, San Feliu de Guixols, Spain, 4-11 June (1984).Google Scholar
  56. [56]
    B. de Wit, D.J. Smit and N.D. Hari Dass, Residual supersymmetry of compactified D = 10 supergravity, Nucl. Phys. B 283 (1987) 165 [SPIRES].ADSGoogle Scholar
  57. [57]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [SPIRES].ADSGoogle Scholar
  58. [58]
    P.J. Steinhardt and D. Wesley, Dark energy, inflation and extra dimensions, Phys. Rev. D 79 (2009) 104026 [arXiv:0811.1614] [SPIRES].ADSGoogle Scholar
  59. [59]
    I.P. Neupane, Extra dimensions, warped compactifications and cosmic acceleration, Phys. Lett. B 683 (2010) 88 [arXiv:0903.4190] [SPIRES].ADSGoogle Scholar
  60. [60]
    I.P. Neupane, Accelerating universe from warped extra dimensions, Class. Quant. Grav. 26 (2009) 195008 [arXiv:0905.2774] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  61. [61]
    B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua, JHEP 02 (2007) 018 [hep-th/0607223] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  62. [62]
    G. Dall’Agata, On supersymmetric solutions of type IIB supergravity with general fluxes, Nucl. Phys. B 695 (2004) 243 [hep-th/0403220] [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    K. Behrndt and M. Cvetič, General N = 1 supersymmetric fluxes in massive type IIA string theory, Nucl. Phys. B 708 (2005) 45 [hep-th/0407263] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    J. Bovy, D. Lüst and D. Tsimpis, N = 1, 2 supersymmetric vacua of IIA supergravity and SU(2) structures, JHEP 08 (2005) 056 [hep-th/0506160] [SPIRES].CrossRefADSGoogle Scholar
  65. [65]
    C. Kounnas, D. Lüst, P.M. Petropoulos and D. Tsimpis, AdS 4 flux vacua in type-II superstrings and their domain-wall solutions, JHEP 09 (2007) 051 [arXiv:0707.4270] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    D. Andriot, New supersymmetric flux vacua with intermediate SU(2) structure, JHEP 08 (2008) 096 [arXiv:0804.1769] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    D. Lüst and D. Tsimpis, New supersymmetric AdS 4 type-II vacua, JHEP 09 (2009) 098 [arXiv:0906.2561] [SPIRES].CrossRefGoogle Scholar
  68. [68]
    D. Lüst and D. Tsimpis, Classes of AdS 4 type IIA/ IIB compactifications with SU(3) × SU(3) structure, JHEP 04 (2009) 111 [arXiv:0901.4474] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    H. Triendl and J. Louis, Type II compactifications on manifolds with SU(2) × SU(2) structure, JHEP 07 (2009) 080 [arXiv:0904.2993] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  70. [70]
    J. Louis, D. Martinez-Pedrera and A. Micu, Heterotic compactifications on SU(2)-structure backgrounds, JHEP 09 (2009) 012 [arXiv:0907.3799] [SPIRES].CrossRefADSGoogle Scholar
  71. [71]
    T. Danckaert and J. Louis, Type IIA orientifold compactification on SU(2)-structure manifolds, JHEP 01 (2010) 105 [arXiv:0911.5697] [SPIRES].CrossRefGoogle Scholar
  72. [72]
    J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  73. [73]
    C.M. Hull and R.A. Reid-Edwards, Flux compactifications of string theory on twisted tori, Fortsch. Phys. 57 (2009) 862 [hep-th/0503114] [SPIRES].zbMATHCrossRefMathSciNetGoogle Scholar
  74. [74]
    D. Cassani and A.-K. Kashani-Poor, Exploiting N = 2 in consistent coset reductions of type IIA, Nucl. Phys. B 817 (2009) 25 [arXiv:0901.4251] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  75. [75]
    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized- structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  76. [76]
    C. Caviezel et al., The effective theory of type IIA AdS4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  77. [77]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  78. [78]
    B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  79. [79]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  80. [80]
    D. Robbins and T. Wrase, D-terms from generalized NS-NS fluxes in type II, JHEP 12 (2007) 058 [arXiv:0709.2186] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  81. [81]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].MathSciNetADSGoogle Scholar
  82. [82]
    S.F. Hassan, SO(d,d) transformations of Ramond-Ramond fields and space-time spinors, Nucl. Phys. B 583 (2000) 431 [hep-th/9912236] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  83. [83]
    A. Micu, E. Palti and G. Tasinato, Towards Minkowski vacua in type II string compactifications, JHEP 03 (2007) 104 [hep-th/0701173] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  84. [84]
    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [SPIRES].CrossRefGoogle Scholar
  85. [85]
    P. Koerber and S. Körs, A landscape of non-supersymmetric AdS vacua on coset manifolds, 1001.0003 [SPIRES].
  86. [86]
    G. Villadoro and F. Zwirner, On general flux backgrounds with localized sources, JHEP 11 (2007) 082 [arXiv:0710.2551] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  87. [87]
    B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [SPIRES].CrossRefGoogle Scholar
  88. [88]
    I.P. Neupane and D.L. Wiltshire, Cosmic acceleration from M-theory on twisted spaces, Phys. Rev. D 72 (2005) 083509 [hep-th/0504135] [SPIRES].ADSGoogle Scholar
  89. [89]
    A. Font, A. Guarino and J.M. Moreno, Algebras and non-geometric flux vacua, JHEP 12 (2008) 050 [arXiv:0809.3748] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  90. [90]
    A. Guarino and G.J. Weatherill, Non-geometric flux vacua, S-duality and algebraic geometry, JHEP 02 (2009) 042 [arXiv:0811.2190] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  91. [91]
    J. Gray, Y.-H. He, A. Ilderton and A. Lukas, STRINGVACUA: a Mathematica package for studying vacuum configurations in string phenomenology, Comput. Phys. Commun. 180 (2009) 107 [arXiv:0801.1508] [SPIRES].CrossRefADSGoogle Scholar
  92. [92]
    M. Gomez-Reino, J. Louis and C.A. Scrucca, No metastable de Sitter vacua in N = 2 supergravity with only hypermultiplets, JHEP 02 (2009) 003 [arXiv:0812.0884] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  93. [93]
    D. Roest, Gaugings at angles from orientifold reductions, Class. Quant. Grav. 26 (2009) 135009 [arXiv:0902.0479] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  94. [94]
    G. Dall’Agata, G. Villadoro and F. Zwirner, Type-IIA flux compactifications and N = 4 gauged supergravities, JHEP 08 (2009) 018 [arXiv:0906.0370] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Max-Planck-Institut für PhysikMünchenGermany
  2. 2.Institut für Theoretische Physik & Center for Quantum Engineering and Spacetime ResearchLeibniz Universität HannoverHannoverGermany

Personalised recommendations