Neutrino oscillations: quantum mechanics vs. quantum field theory

  • Evgeny Kh. Akhmedov
  • Joachim KoppEmail author
Open Access


A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino’s interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.


Neutrino Physics Solar and Atmospheric Neutrinos 


  1. [1]
    J. Rich, The Quantum mechanics of neutrino oscillations, Phys. Rev. D 48 (1993) 4318 [SPIRES].ADSGoogle Scholar
  2. [2]
    M. Beuthe, Oscillations of neutrinos and mesons in quantum field theory, Phys. Rept. 375 (2003) 105 [hep-ph/0109119] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    S. Nussinov, Solar Neutrinos and Neutrino Mixing, Phys. Lett. B 63 (1976) 201 [SPIRES].ADSGoogle Scholar
  4. [4]
    B. Kayser, On the Quantum Mechanics of Neutrino Oscillation, Phys. Rev. D 24 (1981) 110 [SPIRES].ADSGoogle Scholar
  5. [5]
    C. Giunti, C.W. Kim and U.W. Lee, When do neutrinos really oscillate?: Quantum mechanics of neutrino oscillations, Phys. Rev. D 44 (1991) 3635 [SPIRES].ADSGoogle Scholar
  6. [6]
    K. Kiers, S. Nussinov and N. Weiss, Coherence effects in neutrino oscillations, Phys. Rev. D 53 (1996) 537 [hep-ph/9506271] [SPIRES].ADSGoogle Scholar
  7. [7]
    A.D. Dolgov, A.Y. Morozov, L.B. Okun and M.G. Shchepkin, Do muons oscillate?, Nucl. Phys. B 502 (1997) 3 [hep-ph/9703241] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    C. Giunti and C.W. Kim, Coherence of neutrino oscillations in the wave packet approach, Phys. Rev. D 58 (1998) 017301 [hep-ph/9711363] [SPIRES].ADSGoogle Scholar
  9. [9]
    C.Y. Cardall, Coherence of neutrino flavor mixing in quantum field theory, Phys. Rev. D 61 (2000) 073006 [hep-ph/9909332] [SPIRES].ADSGoogle Scholar
  10. [10]
    A.D. Dolgov, Neutrino oscillations and cosmology, hep-ph/0004032 [SPIRES].
  11. [11]
    A.D. Dolgov, Neutrinos in cosmology, Phys. Rept. 370 (2002) 333 [hep-ph/0202122] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    C. Giunti, Neutrino wave packets in quantum field theory, JHEP 11 (2002) 017 [hep-ph/0205014] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    Y. Farzan and A.Y. Smirnov, Coherence and oscillations of cosmic neutrinos, Nucl. Phys. B 805 (2008) 356 [arXiv:0803.0495] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    L. Visinelli and P. Gondolo, Neutrino Oscillations and Decoherence, arXiv:0810.4132 [SPIRES].
  15. [15]
    E.K. Akhmedov and A.Y. Smirnov, Paradoxes of neutrino oscillations, Phys. Atom. Nucl. 72 (2009) 1363 [arXiv:0905.1903] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Zralek, From kaons to neutrinos: quantum mechanics of particle oscillations, Acta Phys. Polon. B 29 (1998) 3925 [hep-ph/9810543] [SPIRES].ADSGoogle Scholar
  17. [17]
    I.Y. Kobzarev, B.V. Martemyanov, L.B. Okun and M.G. Shchepkin, The phenomenology of neutrino oscillations, Sov. J. Nucl. Phys. 32 (1980) 823 [Yad. Fiz. 32 (1980) 1590] [SPIRES].Google Scholar
  18. [18]
    I.Y. Kobzarev, B.V. Martemyanov, L.B. Okun and M.G. Shchepkin, Sum rules for neutrino oscillations, Sov. J. Nucl. Phys. 35 (1982) 708 [Yad. Fiz. 35 (1982) 1210] [SPIRES].Google Scholar
  19. [19]
    C. Giunti, C.W. Kim, J.A. Lee and U.W. Lee, On the treatment of neutrino oscillations without resort to weak eigenstates, Phys. Rev. D 48 (1993) 4310 [hep-ph/9305276] [SPIRES].ADSGoogle Scholar
  20. [20]
    W. Grimus and P. Stöckinger, Real Oscillations of Virtual Neutrinos, Phys. Rev. D 54 (1996) 3414 [hep-ph/9603430] [SPIRES].ADSGoogle Scholar
  21. [21]
    W. Grimus, P. Stöckinger and S. Mohanty, The field-theoretical approach to coherence in neutrino oscillations, Phys. Rev. D 59 (1999) 013011 [hep-ph/9807442] [SPIRES].ADSGoogle Scholar
  22. [22]
    A. Ioannisian and A. Pilaftsis, Neutrino oscillations in space within a solvable model, Phys. Rev. D 59 (1999) 053003 [hep-ph/9809503] [SPIRES].ADSGoogle Scholar
  23. [23]
    M. Beuthe, Towards a unique formula for neutrino oscillations in vacuum, Phys. Rev. D 66 (2002) 013003 [hep-ph/0202068] [SPIRES].ADSGoogle Scholar
  24. [24]
    A.D. Dolgov, L.B. Okun, M.V. Rotaev and M.G. Schepkin, Oscillations of neutrinos produced by a beam of electrons, hep-ph/0407189 [SPIRES].
  25. [25]
    A.D. Dolgov et al., Oscillations of neutrinos produced and detected in crystals, Nucl. Phys. B 729 (2005) 79 [hep-ph/0505251] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    E.K. Akhmedov, J. Kopp and M. Lindner, Oscillations of Mossbauer neutrinos, JHEP 05 (2008) 005 [arXiv:0802.2513] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    J. Kopp, Mossbauer neutrinos in quantum mechanics and quantum field theory, JHEP 06 (2009) 049 [arXiv:0904.4346] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    R.S. Raghavan, Recoilless resonant capture of antineutrinos, hep-ph/0511191 [SPIRES].
  29. [29]
    W. Potzel, Recoilless Resonant Emission and Detection of Electron Antineutrinos, J. Phys. Conf. Ser. 136 (2008) 022010 [arXiv:0810.2170] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, Reading U.S.A. (1995) [SPIRES].
  31. [31]
    I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products, 7th edition, Academic Press, San Diego U.S.A. (2007).Google Scholar
  32. [32]
    E.K. Akhmedov, J. Kopp and M. Lindner, On application of the time-energy uncertainty relation to Mossbauer neutrino experiments, J. Phys. G 36 (2009) 078001 [arXiv:0803.1424] [SPIRES].ADSGoogle Scholar
  33. [33]
    C. Giunti, Fock states of flavor neutrinos are unphysical, Eur. Phys. J. C 39 (2005) 377 [hep-ph/0312256] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany
  2. 2.National Research Centre Kurchatov InstituteMoscowRussia
  3. 3.Theoretical Physics DepartmentFermilabBataviaU.S.A.

Personalised recommendations