Advertisement

Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations

  • D. N. Coumbe
  • J. Jurkiewicz
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate the spectral dimension for a nonperturbative lattice approach to quantum gravity, known as causal dynamical triangulations (CDT), showing that the dimension of spacetime smoothly decreases from ∼ 4 on large distance scales to ∼ 3/2 on small distance scales. This novel result may provide a possible resolution to a long-standing argument against the asymptotic safety scenario. A method for determining the relative lattice spacing within the physical phase of the CDT parameter space is also outlined, which might prove useful when studying renormalization group flow in models of lattice quantum gravity.

Keywords

Models of Quantum Gravity Lattice Models of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, General relativity, an Einstein centenary survey, Cambridge Univ. Press, Cambridge U.K. (1997).Google Scholar
  2. [2]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Spectral dimension of the universe, Phys. Rev. Lett. 95 (2005) 171301 [hep-th/0505113] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity, JHEP 10 (2005) 050 [hep-th/0508202] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    P. Hořava, Spectral dimension of the universe in quantum gravity at a Lifshitz point, Phys. Rev. Lett. 102 (2009) 161301 [arXiv:0902.3657] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    L. Modesto, Fractal structure of loop quantum gravity, Class. Quant. Grav. 26 (2009) 242002 [arXiv:0812.2214] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    J.J. Atick and E. Witten, The Hagedorn transition and the number of degrees of freedom of string theory, Nucl. Phys. B 310 (1988) 291 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    G. Calcagni and L. Modesto, Nonlocality in string theory, J. Phys. A 47 (2014) 355402 [arXiv:1310.4957] [INSPIRE].MathSciNetGoogle Scholar
  8. [8]
    J. Ambjørn and J. Jurkiewicz, Four-dimensional simplicial quantum gravity, Phys. Lett. B 278 (1992) 42 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    S. Catterall, J.B. Kogut and R. Renken, Phase structure of four-dimensional simplicial quantum gravity, Phys. Lett. B 328 (1994) 277 [hep-lat/9401026] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    P. Bialas, Z. Burda, A. Krzywicki and B. Petersson, Focusing on the fixed point of 4D simplicial gravity, Nucl. Phys. B 472 (1996) 293 [hep-lat/9601024] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    B.V. de Bakker, Further evidence that the transition of 4D dynamical triangulation is first order, Phys. Lett. B 389 (1996) 238 [hep-lat/9603024] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    J. Ambjørn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B 536 (1998) 407 [hep-th/9805108] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100 (2008) 091304 [arXiv:0712.2485] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett. 107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Hausdorff, Dimension und äußeres Maß (in German), Math. Ann. 79 (1919) 157.CrossRefMathSciNetGoogle Scholar
  17. [17]
    D. Benedetti and J. Henson, Spectral geometry as a probe of quantum spacetime, Phys. Rev. D 80 (2009) 124036 [arXiv:0911.0401] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    T. Banks, TASI lectures on holographic space-time, SUSY and gravitational effective field theory, arXiv:1007.4001 [INSPIRE].
  19. [19]
    A. Shomer, A pedagogical explanation for the non-renormalizability of gravity, arXiv:0709.3555 [INSPIRE].
  20. [20]
    K. Falls and D.F. Litim, Black hole thermodynamics under the microscope, Phys. Rev. D 89 (2014) 084002 [arXiv:1212.1821] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R. Percacci and G.P. Vacca, Asymptotic safety, emergence and minimal length, Class. Quant. Grav. 27 (2010) 245026 [arXiv:1008.3621] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    B. Koch and F. Saueressig, Structural aspects of asymptotically safe black holes, Class. Quant. Grav. 31 (2014) 015006 [arXiv:1306.1546] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    S. Carlip and D. Grumiller, Lower bound on the spectral dimension near a black hole, Phys. Rev. D 84 (2011) 084029 [arXiv:1108.4686] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Laiho and D. Coumbe, Evidence for asymptotic safety from lattice quantum gravity, Phys. Rev. Lett. 107 (2011) 161301 [arXiv:1104.5505] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    J. Ambjørn, L. Glaser, A. Görlich and J. Jurkiewicz, Euclidian 4D quantum gravity with a non-trivial measure term, JHEP 10 (2013) 100 [arXiv:1307.2270] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    D. Coumbe and J. Laiho, Exploring Euclidean dynamical triangulations with a non-trivial measure term, arXiv:1401.3299 [INSPIRE].
  27. [27]
    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev. D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].ADSGoogle Scholar
  28. [28]
    J. Ambjørn, A. Görlich, J. Jurkiewicz, A. Kreienbuehl and R. Loll, Renormalization group flow in CDT, Class. Quant. Grav. 31 (2014) 165003 [arXiv:1405.4585] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    T. Jonsson and J.F. Wheater, The spectral dimension of the branched polymer phase of two-dimensional quantum gravity, Nucl. Phys. B 515 (1998) 549 [hep-lat/9710024] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    J. Ambjørn, D. Boulatov, J.L. Nielsen, J. Rolf and Y. Watabiki, The spectral dimension of 2D quantum gravity, JHEP 02 (1998) 010 [hep-th/9801099] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    M. Reuter and F. Saueressig, Quantum Einstein gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    S. Rechenberger and F. Saueressig, The R 2 phase-diagram of QEG and its spectral dimension, Phys. Rev. D 86 (2012) 024018 [arXiv:1206.0657] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityKrakowPoland

Personalised recommendations