Skip to main content
Log in

Discovery potential for low-scale gauge mediation at early LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Low-scale gauge-mediated supersymmetry (SUSY)-breaking (GMSB) models with gravitino mass m 3/2 < 16 eV are attractive, since there are no flavor and cosmological problems. In this paper, we thoroughly study the collider signal in the case that the next-to-lightest SUSY particle is the bino or slepton and investigate the discovery potential of the LHC. Our result is applicable to a wider class of GMSB models other than the minimal GMSB models and we pay particular attention to realistic experimental setups. We also apply our analysis to the minimal GMSB models with a metastable SUSY-breaking vacuum and we show, by requiring sufficient stability of the SUSY-breaking vacuum, these models can be tested at an early stage of the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.F. Giudice and R. Rattazzi, Theories with gauge-mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [SPIRES].

    Article  ADS  Google Scholar 

  2. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [SPIRES].

    ADS  Google Scholar 

  3. H. Baer, P.G. Mercadante, F. Paige, X. Tata and Y. Wang, LHC reach for gauge mediated supersymmetry breaking models via prompt photon channels, Phys. Lett. B 435 (1998) 109 [hep-ph/9806290] [SPIRES].

    ADS  Google Scholar 

  4. H. Baer, P.G. Mercadante, X. Tata and Y.-l. Wang, The Reach of the CERN large hadron collider for gauge mediated supersymmetry breaking models, n Phys. Rev. D 62 (2000) 095007 [hep-ph/0004001] [SPIRES].

    ADS  Google Scholar 

  5. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment-Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].

  6. ATLAS collaboration, D. Harper, Discovery Potential for GMSB Supersymmetry in ATLAS using the Zγ+ /E T Final State at a center of mass energy of \( \sqrt {s} = 10\;{\text{TeV}} \), arXiv:0910.4062 [SPIRES].

  7. D. Ludwig and f.t.A. collaboration, Expected Performance of the ATLAS Detector in GMSB Models with Tau Final States, PoS HCP2009 (2009) 073 [arXiv:1002.0944] [SPIRES].

    Google Scholar 

  8. J. Hisano, M. Nagai, M. Senami and S. Sugiyama, Stability of Metastable Vacua in Gauge Mediated SUSY Breaking Models with Ultra Light Gravitino, Phys. Lett. B 659 (2008) 361 [arXiv:0708.3340] [SPIRES].

    ADS  Google Scholar 

  9. J. Hisano, M. Nagai, S. Sugiyama and T.T. Yanagida, Upperbound on Squark Masses in Gauge-Mediation Model with Light Gravitino, Phys. Lett. B 665 (2008) 237 [arXiv:0804.2957] [SPIRES].

    ADS  Google Scholar 

  10. C. Cheung, A.L. Fitzpatrick and D. Shih, (Extra)Ordinary Gauge Mediation, JHEP 07 (2008) 054 [arXiv:0710.3585] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  12. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for p p, \( \bar{p}p \) and e + e reactions, hep-ph/0312045 [SPIRES].

  13. G. Marchesini et al., HERWIG: A Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1-April 1991, Comput. Phys. Commun. 67 (1992) 465 [SPIRES].

    ADS  MATH  Google Scholar 

  14. G. Corcella et al., HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  15. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [SPIRES].

  16. E. Richter-Was, AcerDET: A particle level fast simulation and reconstruction package for phenomenological studies on high p T physics at LHC, hep-ph/0207355 [SPIRES].

  17. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].

    Article  ADS  Google Scholar 

  18. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    Article  ADS  Google Scholar 

  19. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  20. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  21. J.T. Linnemann, Measures of significance in HEP and astrophysics, talk from PhyStat2003, Stanford Ca U.S.A., September 2003, physics/0312059.

  22. D0 collaboration, V.M. Abazov et al., Search for associated production of charginos and neutralinos in the trilepton final state using 2.3 fb-1 of data, Phys. Lett. B 680 (2009) 34 [arXiv:0901.0646] [SPIRES].

    ADS  Google Scholar 

  23. J.T. Ruderman and D. Shih, Slepton co-NLSPs at the Tevatron, JHEP 11 (2010) 046 [arXiv:1009.1665] [SPIRES].

    Article  ADS  Google Scholar 

  24. D0 collaboration, V.M. Abazov et al., Search for diphoton events with large missing transverse energy in 6.3 fb −1 of \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 105 (2010) 221802 [arXiv:1008.2133] [SPIRES].

    Article  ADS  Google Scholar 

  25. DELPHI collaboration, J. Abdallah et al., Searches for supersymmetric particles in e + e collisions up to 208-GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421 [hep-ex/0311019] [SPIRES].

    Google Scholar 

  26. Z. Komargodski and D. Shih, Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models, JHEP 04 (2009) 093 [arXiv:0902.0030] [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Shirai, M. Yamazaki and K. Yonekura, Aspects of Non-minimal Gauge Mediation, JHEP 06 (2010) 056 [arXiv:1003.3155] [SPIRES].

    Article  ADS  Google Scholar 

  28. R. Sato and K. Yonekura, Low Scale Direct Gauge Mediation with Perturbatively Stable Vacuum, JHEP 03 (2010) 017 [arXiv:0912.2802] [SPIRES].

    Article  ADS  Google Scholar 

  29. K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida, Strongly Interacting Gauge Mediation at the LHC, JHEP 07 (2008) 107 [arXiv:0804.3296] [SPIRES].

    Article  ADS  Google Scholar 

  30. M. Ibe, Y. Shirman and T.T. Yanagida, Cascade supersymmetry breaking and low-scale gauge mediation, JHEP 12 (2010) 027 [arXiv:1009.2818] [SPIRES].

    Article  ADS  Google Scholar 

  31. K.-I. Izawa and T. Yanagida, Dynamical Supersymmetry Breaking in Vector-like Gauge Theories, Prog. Theor. Phys. 95 (1996) 829 [hep-th/9602180] [SPIRES].

    Article  ADS  Google Scholar 

  32. K.A. Intriligator and S.D. Thomas, Dynamical Supersymmetry Breaking on Quantum Moduli Spaces, Nucl. Phys. B 473 (1996) 121 [hep-th/9603158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. J.L. Jones, Gauge Coupling Unification in MSSM + 5 Flavors, Phys. Rev. D 79 (2009) 075009 [arXiv:0812.2106] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eita Nakamura.

Additional information

ArXiv ePrint: 1010.5995

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, E., Shirai, S. Discovery potential for low-scale gauge mediation at early LHC. J. High Energ. Phys. 2011, 115 (2011). https://doi.org/10.1007/JHEP03(2011)115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)115

Keywords

Navigation