Skip to main content

Measuring the top energy asymmetry at the LHC: QCD and SMEFT interpretations

A preprint version of the article is available at arXiv.

Abstract

The energy asymmetry in top-antitop-jet production is an observable of the top charge asymmetry designed for the LHC. We perform a realistic analysis in the boosted kinematic regime, including effects of the parton shower, hadronization and expected experimental uncertainties. Our predictions at particle level show that the energy asymmetry in the Standard Model can be measured with a significance of 3σ during Run 3, and with more than 5σ significance at the HL-LHC. Beyond the Standard Model the energy asymmetry is a sensitive probe of new physics with couplings to top quarks. In the framework of the Standard Model Effective Field Theory, we show that the sensitivity of the energy asymmetry to effective four-quark interactions is higher or comparable to other top observables and resolves blind directions in current LHC fits. We suggest to include the energy asymmetry as an important observable in global searches for new physics in the top sector.

References

  1. [1]

    Particle Data Group, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE]

  2. [2]

    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant New Physics in Top Pair Production at Hadron Colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Buckley et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].

  4. [4]

    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    C. Englert, L. Moore, K. Nordström and M. Russell, Giving top quark effective operators a boost, Phys. Lett. B 763 (2016) 9 [arXiv:1607.04304] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    C. Englert, M. Russell and C.D. White, Effective Field Theory in the top sector: do multijets help?, Phys. Rev. D 99 (2019) 035019 [arXiv:1809.09744] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    N.P. Hartland et al., A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector, JHEP 04 (2019) 100 [arXiv:1901.05965] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    I. Brivio et al., O new physics, where art thou? A global search in the top sector, JHEP 02 (2020) 131 [arXiv:1910.03606] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to \( t\overline{t} \) + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [INSPIRE].

  12. [12]

    S. Dittmaier, P. Uwer and S. Weinzierl, Hadronic top-quark pair production in association with a hard jet at next-to-leading order QCD: Phenomenological studies for the Tevatron and the LHC, Eur. Phys. J. C 59 (2009) 625 [arXiv:0810.0452] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    K. Melnikov, A. Scharf and M. Schulze, Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays, Phys. Rev. D 85 (2012) 054002 [arXiv:1111.4991] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP 01 (2012) 137 [arXiv:1110.5251] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    P. Skands, B. Webber and J. Winter, QCD Coherence and the Top Quark Asymmetry, JHEP 07 (2012) 151 [arXiv:1205.1466] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    G. Bevilacqua, H.B. Hartanto, M. Kraus and M. Worek, Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider, Phys. Rev. Lett. 116 (2016) 052003 [arXiv:1509.09242] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    S. Höche, P. Maierhöfer, N. Moretti, S. Pozzorini and F. Siegert, Next-to-leading order QCD predictions for top-quark pair production with up to three jets, Eur. Phys. J. C 77 (2017) 145 [arXiv:1607.06934] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    S. Alioli et al., A new observable to measure the top-quark mass at hadron colliders, Eur. Phys. J. C 73 (2013) 2438 [arXiv:1303.6415] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    J. Fuster, A. Irles, D. Melini, P. Uwer and M. Vos, Extracting the top-quark running mass using \( t\overline{t} \) + 1-jet events produced at the Large Hadron Collider, Eur. Phys. J. C 77 (2017) 794 [arXiv:1704.00540] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    ATLAS collaboration, Measurement of the top-quark mass in \( t\overline{t} \) + 1-jet events collected with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 11 (2019) 150 [arXiv:1905.02302] [INSPIRE].

  22. [22]

    S. Berge and S. Westhoff, Top-Quark Charge Asymmetry Goes Forward: Two New Observables for Hadron Colliders, JHEP 07 (2013) 179 [arXiv:1305.3272] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    S. Berge and S. Westhoff, Observing the Top Energy Asymmetry at the LHC, Phys. Rev. D 95 (2017) 014035 [arXiv:1608.00574] [INSPIRE].

  24. [24]

    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [INSPIRE].

  25. [25]

    P. Ferrario and G. Rodrigo, Heavy colored resonances in \( t\overline{t} \) + jet at the LHC, JHEP 02 (2010) 051 [arXiv:0912.0687] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Berge and S. Westhoff, Top-Quark Charge Asymmetry with a Jet Handle, Phys. Rev. D 86 (2012) 094036 [arXiv:1208.4104] [INSPIRE].

  27. [27]

    R.S. Chivukula, A. Farzinnia, J. Ren and E.H. Simmons, Hadron Collider Production of Massive Color-Octet Vector Bosons at Next-to-Leading Order, Phys. Rev. D 87 (2013) 094011 [arXiv:1303.1120] [INSPIRE].

  28. [28]

    S. Alte, S. Berge and H. Spiesberger, Top quark charge asymmetry: searching for light axigluons in \( t\overline{t} \) + jet production at the LHC, JHEP 09 (2014) 084 [arXiv:1406.0501] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    ATLAS collaboration, Inclusive and differential measurement of the charge asymmetry in \( t\overline{t} \) events at 13 TeV with the ATLAS detector, ATLAS-CONF-2019-026 (2019).

  30. [30]

    M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-quark charge asymmetry at the LHC and Tevatron through NNLO QCD and NLO EW, Phys. Rev. D 98 (2018) 014003 [arXiv:1711.03945] [INSPIRE].

  31. [31]

    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].

  32. [32]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

  34. [34]

    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  35. [35]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)063 [arXiv:0802.1189] [INSPIRE].

  36. [36]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

  37. [37]

    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  39. [39]

    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    ATLAS collaboration, Proposal for truth particle observable definitions in physics measurements, ATL-PHYS-PUB-2015-013 (2015).

  41. [41]

    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    ATLAS collaboration, Jet mass reconstruction with the ATLAS Detector in early Run 2 data, ATLAS-CONF-2016-035 (2016).

  43. [43]

    ATLAS collaboration, Measurements of top-quark pair differential and double-differential cross-sections in the+jets channel with pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Eur. Phys. J. C 79 (2019) 1028 [arXiv:1908.07305] [INSPIRE].

  44. [44]

    D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].

  45. [45]

    J.H. Kühn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].

  46. [46]

    J.H. Kühn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, Chin. Phys. C 42 (2018) 023104 [arXiv:1708.05928] [INSPIRE].

  49. [49]

    C. Englert, P. Galler and C.D. White, Effective field theory and scalar extensions of the top quark sector, Phys. Rev. D 101 (2020) 035035 [arXiv:1908.05588] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eleni Vryonidou.

Additional information

ArXiv ePrint: 2001.07225

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basan, A., Berta, P., Masetti, L. et al. Measuring the top energy asymmetry at the LHC: QCD and SMEFT interpretations. J. High Energ. Phys. 2020, 184 (2020). https://doi.org/10.1007/JHEP03(2020)184

Download citation

Keywords

  • Top physics
  • Beyond Standard Model
  • Hadron-Hadron scattering (experiments)
  • QCD