Quantum nature of Wigner function for inflationary tensor perturbations

Abstract

We study the Wigner function for the inflationary tensor perturbation defined in the real phase space. We compute explicitly the Wigner function including the contributions from the cubic self-interaction Hamiltonian of tensor perturbations. Then we argue that it is no longer an appropriate description for the probability distribution in the sense that quantum nature allows negativity around vanishing phase variables. This comes from the non-Gaussian wavefunction in the mixed state as a result of the non-linear interaction between super- and sub-horizon modes. We also show that this is related to the explicit infrared divergence in the Wigner function, in contrast to the trace of the density matrix.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Martin, Cosmic Inflation, Quantum Information and the Pioneering Role of John S Bell in Cosmology, Universe 5 (2019) 92 [arXiv:1904.00083] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33 (1981) 532 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    A.H. Guth and S.Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].

  4. [4]

    S.W. Hawking, The Development of Irregularities in a Single Bubble Inflationary Universe, Phys. Lett. 115B (1982) 295 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A.A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. 117B (1982) 175 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous Creation of Almost Scale-Free Density Perturbations in an Inflationary Universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  MATH  Google Scholar 

  8. [8]

    A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. 108B (1982) 389 [INSPIRE].

  9. [9]

    A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    A.H. Guth and S.-Y. Pi, The Quantum Mechanics of the Scalar Field in the New Inflationary Universe, Phys. Rev. D 32 (1985) 1899 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. [11]

    L.P. Grishchuk and Y.V. Sidorov, On the Quantum State of Relic Gravitons, Class. Quant. Grav. 6 (1989) L161 [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    L.P. Grishchuk and Y.V. Sidorov, Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev. D 42 (1990) 3413 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. [13]

    A. Albrecht, P. Ferreira, M. Joyce and T. Prokopec, Inflation and squeezed quantum states, Phys. Rev. D 50 (1994) 4807 [astro-ph/9303001] [INSPIRE].

  14. [14]

    D. Polarski and A.A. Starobinsky, Semiclassicality and decoherence of cosmological perturbations, Class. Quant. Grav. 13 (1996) 377 [gr-qc/9504030] [INSPIRE].

  15. [15]

    W.H. Zurek, Decoherence, einselection and the quantum origins of the classical, Rev. Mod. Phys. 75 (2003) 715 [quant-ph/0105127] [INSPIRE].

  16. [16]

    M. Schlosshauer, Decoherence, the Measurement Problem and Interpretations of Quantum Mechanics, Rev. Mod. Phys. 76 (2004) 1267 [quant-ph/0312059] [INSPIRE].

  17. [17]

    C.P. Burgess, R. Holman and D. Hoover, Decoherence of inflationary primordial fluctuations, Phys. Rev. D 77 (2008) 063534 [astro-ph/0601646] [INSPIRE].

  18. [18]

    C. Kiefer, I. Lohmar, D. Polarski and A.A. Starobinsky, Pointer states for primordial fluctuations in inflationary cosmology, Class. Quant. Grav. 24 (2007) 1699 [astro-ph/0610700] [INSPIRE].

  19. [19]

    C.P. Burgess, R. Holman, G. Tasinato and M. Williams, EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical, JHEP 03 (2015) 090 [arXiv:1408.5002] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  20. [20]

    C.P. Burgess, R. Holman and G. Tasinato, Open EFTs, IR effects & late-time resummations: systematic corrections in stochastic inflation, JHEP 01 (2016) 153 [arXiv:1512.00169] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    E. Nelson, Quantum Decoherence During Inflation from Gravitational Nonlinearities, JCAP 03 (2016) 022 [arXiv:1601.03734] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    S. Shandera, N. Agarwal and A. Kamal, Open quantum cosmological system, Phys. Rev. D 98 (2018) 083535 [arXiv:1708.00493] [INSPIRE].

  23. [23]

    J. Martin and V. Vennin, Observational constraints on quantum decoherence during inflation, JCAP 05 (2018) 063 [arXiv:1801.09949] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    J.-O. Gong and M.-S. Seo, Quantum non-linear evolution of inflationary tensor perturbations, JHEP 05 (2019) 021 [arXiv:1903.12295] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys. 48 (1976) 119 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    T. Banks, L. Susskind and M.E. Peskin, Difficulties for the Evolution of Pure States Into Mixed States, Nucl. Phys. B 244 (1984) 125 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. [27]

    E.P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932) 749 [INSPIRE].

  28. [28]

    S. Habib, The classical limit in quantum cosmology. 1 Quantum mechanics and the Wigner function, Phys. Rev. D 42 (1990) 2566 [INSPIRE].

  29. [29]

    S. Habib and R. Laflamme, Wigner function and decoherence in quantum cosmology, Phys. Rev. D 42 (1990) 4056 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. [30]

    J. Martin and V. Vennin, Quantum Discord of Cosmic Inflation: Can we Show that CMB Anisotropies are of Quantum-Mechanical Origin?, Phys. Rev. D 93 (2016) 023505 [arXiv:1510.04038] [INSPIRE].

  31. [31]

    R. Hudson, When is the wigner quasi-probability density non-negative?, Rept. Math. Phys. 6 (1974) 249.

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    M. Revzen, P.A. Mello, A. Mann and L.M. Johansen, OBell’s Inequality Violation (BIQV) with Non-Negative Wigner Function, Phys. Rev. A 71 (2004) 022103 [quant-ph/0405100].

  33. [33]

    J. Martin and V. Vennin, Obstructions to Bell CMB Experiments, Phys. Rev. D 96 (2017) 063501 [arXiv:1706.05001] [INSPIRE].

  34. [34]

    C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The Effective Field Theory of Inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    T. Prokopec and G. Rigopoulos, Path Integral for Inflationary Perturbations, Phys. Rev. D 82 (2010) 023529 [arXiv:1004.0882] [INSPIRE].

  36. [36]

    J.-O. Gong, M.-S. Seo and G. Shiu, Path integral for multi-field inflation, JHEP 07 (2016) 099 [arXiv:1603.03689] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    J.-O. Gong and M.-S. Seo, Consistency relations in multi-field inflation, JCAP 02 (2018) 008 [arXiv:1707.08282] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    F. Hong-Yi and J. VanderLinde, Simple approach to the wave functions of one- and two-mode squeezed states, Phys. Rev. A 39 (1989) 1552.

    ADS  Article  Google Scholar 

  39. [39]

    F. Hong-Yi, H.R. Zaidi and J.R. Klauder, New approach for calculating the normally ordered form of squeeze operators, Phys. Rev. D 35 (1987) 1831 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. [40]

    F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Min-Seok Seo.

Additional information

ArXiv ePrint: 2002.01064

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, JO., Seo, MS. Quantum nature of Wigner function for inflationary tensor perturbations. J. High Energ. Phys. 2020, 60 (2020). https://doi.org/10.1007/JHEP03(2020)060

Download citation

Keywords

  • Cosmology of Theories beyond the SM
  • Effective Field Theories