Advertisement

Ultraviolet completion of a composite asymmetric dark matter model with a dark photon portal

  • Masahiro Ibe
  • Ayuki Kamada
  • Shin KobayashiEmail author
  • Takumi Kuwahara
  • Wakutaka Nakano
Open Access
Regular Article - Theoretical Physics
  • 55 Downloads

Abstract

Composite asymmetric dark matter scenarios naturally explain why the dark matter mass density is comparable with the visible matter mass density. Such scenarios generically require some entropy transfer mechanism below the composite scale; otherwise, their late-time cosmology is incompatible with observations. A tiny kinetic mixing between a dark photon and the visible photon is a promising example of the low-energy portal. In this paper, we demonstrate that grand unifications in the dark and the visible sectors explain the origin of the tiny kinetic mixing. We particularly consider an ultraviolet completion of a simple composite asymmetric dark matter model, where asymmetric dark matter carries a BL charge. In this setup, the longevity of asymmetric dark matter is explained by the BL symmetry, while the dark matter asymmetry originates from the BL asymmetry generated by thermal leptogenesis. In our minimal setup, the Standard Model sector and the dark sector are unified into SU(5)GUT × SU(4)DGUT gauge theories, respectively. This model generates required BL portal operators while suppressing unwanted higher-dimensional operators that could wash out the generated BL asymmetry.

Keywords

Beyond Standard Model GUT 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Dark Matter from new Technicolor Theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].
  2. [2]
    D.D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations, Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
  3. [3]
    M.Y. Khlopov and C. Kouvaris, Strong Interactive Massive Particles from a Strong Coupled Theory, Phys. Rev. D 77 (2008) 065002 [arXiv:0710.2189] [INSPIRE].
  4. [4]
    M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev. D 78 (2008) 065040 [arXiv:0806.1191] [INSPIRE].
  5. [5]
    R. Foadi, M.T. Frandsen and F. Sannino, Technicolor Dark Matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].
  6. [6]
    J. Mardon, Y. Nomura and J. Thaler, Cosmic Signals from the Hidden Sector, Phys. Rev. D 80 (2009) 035013 [arXiv:0905.3749] [INSPIRE].
  7. [7]
    G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky Composite Dark Matter, Phys. Rev. D 81 (2010) 095001 [arXiv:0909.2034] [INSPIRE].
  8. [8]
    R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral Dark Matter: LHC/Direct Detection interplay, Phys. Lett. B 688 (2010) 212 [arXiv:1001.3149] [INSPIRE].
  9. [9]
    M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via Leptogenesis and Dark Sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Lewis, C. Pica and F. Sannino, Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].
  11. [11]
    Lattice Strong Dynamics (LSD) collaboration, Lattice calculation of composite dark matter form factors, Phys. Rev. D 88 (2013) 014502 [arXiv:1301.1693] [INSPIRE].
  12. [12]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone Dark Matter: Experimental Predictions from the Lattice, JHEP 12 (2014) 130 [arXiv:1308.4130] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].
  14. [14]
    Lattice Strong Dynamics (LSD) collaboration, Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].
  15. [15]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].
  16. [16]
    G. Krnjaic and K. Sigurdson, Big Bang Darkleosynthesis, Phys. Lett. B 751 (2015) 464 [arXiv:1406.1171] [INSPIRE].
  17. [17]
    W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei I: Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].
  18. [18]
    W. Detmold, M. McCullough and A. Pochinsky, Dark nuclei II: Nuclear spectroscopy in two-color QCD, Phys. Rev. D 90 (2014) 114506 [arXiv:1406.4116] [INSPIRE].
  19. [19]
    M. Asano and R. Kitano, Partially Composite Dark Matter, JHEP 09 (2014) 171 [arXiv:1406.6374] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Brod, J. Drobnak, A.L. Kagan, E. Stamou and J. Zupan, Stealth QCD-like strong interactions and the \( t\overline{t} \) asymmetry, Phys. Rev. D 91 (2015) 095009 [arXiv:1407.8188] [INSPIRE].
  21. [21]
    O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E. Hardy, R. Lasenby, J. March-Russell and S.M. West, Big Bang Synthesis of Nuclear Dark Matter, JHEP 06 (2015) 011 [arXiv:1411.3739] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Appelquist et al., Stealth Dark Matter: Dark scalar baryons through the Higgs portal, Phys. Rev. D 92 (2015) 075030 [arXiv:1503.04203] [INSPIRE].
  24. [24]
    T. Appelquist et al., Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability, Phys. Rev. Lett. 115 (2015) 171803 [arXiv:1503.04205] [INSPIRE].
  25. [25]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Hardy, R. Lasenby, J. March-Russell and S.M. West, Signatures of Large Composite Dark Matter States, JHEP 07 (2015) 133 [arXiv:1504.05419] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.T. Co, K. Harigaya and Y. Nomura, Chiral Dark Sector, Phys. Rev. Lett. 118 (2017) 101801 [arXiv:1610.03848] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K.R. Dienes, F. Huang, S. Su and B. Thomas, Dynamical Dark Matter from Strongly-Coupled Dark Sectors, Phys. Rev. D 95 (2017) 043526 [arXiv:1610.04112] [INSPIRE].
  29. [29]
    H. Ishida, S. Matsuzaki and Y. Yamaguchi, Bosonic-Seesaw Portal Dark Matter, Prog. Theor. Exp. Phys. 2017 (2017) 103B01 [arXiv:1610.07137] [INSPIRE].
  30. [30]
    S.J. Lonsdale, M. Schroor and R.R. Volkas, Asymmetric Dark Matter and the hadronic spectra of hidden QCD, Phys. Rev. D 96 (2017) 055027 [arXiv:1704.05213] [INSPIRE].
  31. [31]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and Y. Zhang, Dark Matter and Neutrino Mass from the Smallest Non-Abelian Chiral Dark Sector, Phys. Rev. D 96 (2017) 075010 [arXiv:1706.02722] [INSPIRE].
  32. [32]
    M.I. Gresham, H.K. Lou and K.M. Zurek, Nuclear Structure of Bound States of Asymmetric Dark Matter, Phys. Rev. D 96 (2017) 096012 [arXiv:1707.02313] [INSPIRE].
  33. [33]
    M.I. Gresham, H.K. Lou and K.M. Zurek, Early Universe synthesis of asymmetric dark matter nuggets, Phys. Rev. D 97 (2018) 036003 [arXiv:1707.02316] [INSPIRE].
  34. [34]
    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark Matter as a weakly coupled Dark Baryon, JHEP 10 (2017) 210 [arXiv:1707.05380] [INSPIRE].
  35. [35]
    M.I. Gresham, H.K. Lou and K.M. Zurek, Astrophysical Signatures of Asymmetric Dark Matter Bound States, Phys. Rev. D 98 (2018) 096001 [arXiv:1805.04512] [INSPIRE].
  36. [36]
    M. Ibe, A. Kamada, S. Kobayashi and W. Nakano, Composite Asymmetric Dark Matter with a Dark Photon Portal, JHEP 11 (2018) 203 [arXiv:1805.06876] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Braaten, D. Kang and R. Laha, Production of dark-matter bound states in the early universe by three-body recombination, JHEP 11 (2018) 084 [arXiv:1806.00609] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Bai, A.J. Long and S. Lu, Dark Quark Nuggets, arXiv:1810.04360 [INSPIRE].
  39. [39]
    A. Francis, R.J. Hudspith, R. Lewis and S. Tulin, Dark Matter from Strong Dynamics: The Minimal Theory of Dark Baryons, JHEP 12 (2018) 118 [arXiv:1809.09117] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G.D. Kribs and E.T. Neil, Review of strongly-coupled composite dark matter models and lattice simulations, Int. J. Mod. Phys. A 31 (2016) 1643004 [arXiv:1604.04627] [INSPIRE].
  41. [41]
    S. Nussinov, Technocosmologycould a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].
  42. [42]
    S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak Fermion Number Violation and the Production of Stable Particles in the Early Universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].
  43. [43]
    S.M. Barr, Baryogenesis, sphalerons, and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [INSPIRE].
  44. [44]
    D.B. Kaplan, Single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].
  45. [45]
    S. Dodelson, B.R. Greene and L.M. Widrow, Baryogenesis, dark matter and the width of the Z, Nucl. Phys. B 372 (1992) 467 [INSPIRE].
  46. [46]
    V.A. Kuzmin, A Simultaneous solution to baryogenesis and dark matter problems, Phys. Part. Nucl. 29 (1998) 257 [hep-ph/9701269] [INSPIRE].
  47. [47]
    M. Fujii and T. Yanagida, A Solution to the coincidence puzzle of ΩB and ΩDM, Phys. Lett. D 542 (2002) 80 [hep-ph/0206066] [INSPIRE].
  48. [48]
    R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].
  49. [49]
    G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry of the Universe, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [INSPIRE].
  50. [50]
    S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: Effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [INSPIRE].
  51. [51]
    R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [INSPIRE].
  52. [52]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].
  53. [53]
    H. Davoudiasl and R.N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].
  54. [54]
    K. Petraki and R.R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].
  55. [55]
    K.M. Zurek, Asymmetric Dark Matter: Theories, Signatures and Constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, Asymmetric Dark Matter and Dark Radiation, JCAP 07 (2012) 022 [arXiv:1203.5803] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    B. Holdom, Two U(1)’s and \( \epsilon \) Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
  59. [59]
    D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite Inelastic Dark Matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].
  60. [60]
    D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The Cosmology of Composite Inelastic Dark Matter, JHEP 06 (2010) 113 [arXiv:1003.4729] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
  62. [62]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  63. [63]
    W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
  64. [64]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Bauer, P. Foldenauer and J. Jaeckel, Hunting All the Hidden Photons, JHEP 07 (2018) 094 [arXiv:1803.05466] [INSPIRE].
  66. [66]
    J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].ADSzbMATHGoogle Scholar
  67. [67]
    J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, JHEP 09 (2018) 051 [arXiv:1803.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  69. [69]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].
  70. [70]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].
  71. [71]
    S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].
  72. [72]
    M. Ibe, S. Matsumoto and T.T. Yanagida, The GeV-scale dark matter with BL asymmetry, Phys. Lett. B 708 (2012) 112 [arXiv:1110.5452] [INSPIRE].
  73. [73]
    H. Fukuda, S. Matsumoto and S. Mukhopadhyay, Asymmetric dark matter in early Universe chemical equilibrium always leads to an antineutrino signal, Phys. Rev. D 92 (2015) 013008 [arXiv:1411.4014] [INSPIRE].
  74. [74]
    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    Super-Kamiokande collaboration, Search for proton decay via pe + π 0 and pμ + π 0 in 0.31 megaton · years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev. D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].
  76. [76]
    H. Murayama and T. Yanagida, Viable SU(5) GUT with light leptoquark bosons, Mod. Phys. Lett. A 7 (1992) 147 [INSPIRE].
  77. [77]
    I. Dorsner and P. Fileviez Pérez, Unification without supersymmetry: Neutrino mass, proton decay and light leptoquarks, Nucl. Phys. B 723 (2005) 53 [hep-ph/0504276] [INSPIRE].
  78. [78]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].
  79. [79]
    B. Bajc, M. Nemevšek and G. Senjanović, Probing the seesaw mechanism at CERN LHC, Phys. Rev. D 76 (2007) 055011 [hep-ph/0703080] [INSPIRE].
  80. [80]
    M. Ibe, Small steps towards Grand Unification and the electron/positron excesses in cosmic-ray experiments, JHEP 08 (2009) 086 [arXiv:0906.4667] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    T. Aizawa, M. Ibe and K. Kaneta, Coupling Unification and Dark Matter in a Standard Model Extension with Adjoint Majorana Fermions, Phys. Rev. D 91 (2015) 075012 [arXiv:1411.6044] [INSPIRE].
  82. [82]
    P. Cox, A. Kusenko, O. Sumensari and T.T. Yanagida, SU(5) Unification with TeV-scale Leptoquarks, JHEP 03 (2017) 035 [arXiv:1612.03923] [INSPIRE].
  83. [83]
    A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  84. [84]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton New Jersey U.S.A. (1992) [INSPIRE].
  87. [87]
    S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (2010) 1 [Adv. Ser. Direct. High Energy Phys. 18 (1998) 1] [hep-ph/9709356] [INSPIRE].
  88. [88]
    B. Grinstein, A Supersymmetric SU(5) Gauge Theory with No Gauge Hierarchy Problem, Nucl. Phys. B 206 (1982) 387 [INSPIRE].
  89. [89]
    A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Naturally Massless Higgs Doublets in Supersymmetric SU(5), Phys. Lett. B 115 (1982) 380 [INSPIRE].
  90. [90]
    V. Poulin, J. Lesgourgues and P.D. Serpico, Cosmological constraints on exotic injection of electromagnetic energy, JCAP 03 (2017) 043 [arXiv:1610.10051] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    M. Kawasaki, K. Kohri, T. Moroi and Y. Takaesu, Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles, Phys. Rev. D 97 (2018) 023502 [arXiv:1709.01211] [INSPIRE].
  92. [92]
    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].
  94. [94]
    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].
  95. [95]
    M. Ibe, T. Moroi and T.T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].
  96. [96]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
  98. [98]
    S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Masahiro Ibe
    • 1
    • 2
  • Ayuki Kamada
    • 3
  • Shin Kobayashi
    • 1
    • 2
    Email author
  • Takumi Kuwahara
    • 3
  • Wakutaka Nakano
    • 1
    • 2
  1. 1.Kavli IPMU (WPI), UTIASThe University of TokyoKashiwaJapan
  2. 2.ICRR, The University of TokyoKashiwaJapan
  3. 3.Center for Theoretical Physics of the UniverseInstitute for Basic Science (IBS)DaejeonKorea

Personalised recommendations