Advertisement

dS/dS and \( T\overline{T} \)

  • Victor GorbenkoEmail author
  • Eva Silverstein
  • Gonzalo Torroba
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

The \( T\overline{T} \) deformation of a conformal field theory has a dual description as a cutoff AdS3 spacetime, at least at the level of pure 3d gravity. We generalize this deformation in such a way that it builds up a patch of bulk dS3 spacetime instead. At each step along the trajectory in the space of 2d theories, the theory is deformed by a specific combination of \( T\overline{T} \) and the two-dimensional cosmological constant. This provides a concrete holographic dual for the warped throat on the gravity side of the dS/dS duality, at leading order in large central charge. We also analyze a sequence of excitations of this throat on both sides of the duality, as well as the entanglement entropy. Our results point toward a mechanism for obtaining de Sitter solutions starting from seed conformal field theories with AdS duals.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Anninos, De Sitter musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].
  2. [2]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2004) 393 [hep-th/0407125] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Alishahiha, A. Karch and E. Silverstein, Hologravity, JHEP 06 (2005) 028 [hep-th/0504056] [INSPIRE].
  6. [6]
    B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].
  7. [7]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    X. Dong et al., FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [arXiv:1108.5732] [INSPIRE].
  9. [9]
    D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].
  10. [10]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Moduli stabilization and the holographic RG for AdS and dS, JHEP 06 (2013) 089 [arXiv:1209.5392] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    X. Dong, E. Silverstein and G. Torroba, De Sitter holography and entanglement entropy, JHEP 07 (2018) 050 [arXiv:1804.08623] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Miyaji and T. Takayanagi, Surface/state correspondence as a generalized holography, PTEP 2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].
  13. [13]
    Y. Nomura, P. Rath and N. Salzetta, Pulling the boundary into the bulk, Phys. Rev. D 98 (2018) 026010 [arXiv:1805.00523] [INSPIRE].
  14. [14]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  15. [15]
    D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  16. [16]
    A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
  17. [17]
    F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
  18. [18]
    A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \) -deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
  19. [19]
    S. Dubovsky, R. Flauger and V. Gorbenko, Solving the simplest theory of quantum gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \) , JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
  21. [21]
    S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS 2 holography and \( T\overline{T} \) , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].
  22. [22]
    J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].
  23. [23]
    W. Cottrell and A. Hashimoto, Comments on \( T\overline{T} \) double trace deformations and boundary conditions, Phys. Lett. B 789 (2019) 251 [arXiv:1801.09708] [INSPIRE].
  24. [24]
    P. Kraus, J. Liu and D. Marolf, Cutoff AdS 3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].
  25. [25]
    W. Donnelly and V. Shyam, Entanglement entropy and \( T\overline{T} \) deformation, Phys. Rev. Lett. 121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].
  26. [26]
    T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T 2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].
  27. [27]
    M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].
  28. [28]
    G. Bonelli, N. Doroud and M. Zhu, \( T\overline{T} \) -deformations in closed form, JHEP 06 (2018) 149 [arXiv:1804.10967] [INSPIRE].
  29. [29]
    O. Aharony and T. Vaknin, The T T deformation at large central charge, JHEP 05 (2018) 166 [arXiv:1803.00100] [INSPIRE].
  30. [30]
    O. Aharony et al., Modular invariance and uniqueness of \( T\overline{T} \) deformed CFT, JHEP 01 (2019) 086 [arXiv:1808.02492] [INSPIRE].
  31. [31]
    S. Datta and Y. Jiang, \( T\overline{T} \) deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].
  32. [32]
    A. Giveon, N. Itzhaki and D. Kutasov, \( T\overline{T} \) and LST, JHEP 07 (2017) 122 [arXiv:1701.05576] [INSPIRE].
  33. [33]
    M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs, SciPost Phys. 5 (2018) 048 [arXiv:1710.08415] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli and H. Walsh, On \( T\overline{T} \) deformations and supersymmetry, arXiv:1811.00533 [INSPIRE].
  35. [35]
    C.-K. Chang, C. Ferko and S. Sethi, Supersymmetry and \( T\overline{T} \) Deformations, arXiv:1811.01895 [INSPIRE].
  36. [36]
    J.A. Damia and D. Freedman work in progress.Google Scholar
  37. [37]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, \( T\overline{T} \) partition function from topological gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].
  39. [39]
    S. Deser and R. Jackiw, Three-dimensional cosmological gravity: dynamics of constant curvature, Annals Phys. 153 (1984) 405 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter space, Phys. Rev. D 65 (2002) 104039 [hep-th/0112218] [INSPIRE].
  41. [41]
    E.J. Martinec, Conformal field theory, geometry and entropy, hep-th/9809021 [INSPIRE].
  42. [42]
    D. Marolf and M. Rangamani, Causality and the AdS Dirichlet problem, JHEP 04 (2012) 035 [arXiv:1201.1233] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].
  47. [47]
    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    V. Balasubramanian et al., Entwinement in discretely gauged theories, JHEP 12 (2016) 094 [arXiv:1609.03991] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    V. Balasubramanian, B. Craps, T. De Jonckheere and G. Sárosi, Entanglement versus entwinement in symmetric product orbifolds, JHEP 01 (2019) 190 [arXiv:1806.02871] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  50. [50]
    M. Rangamani, Gravity and hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    H. Casini and M. Huerta, On the RG running of the entanglement entropy of a circle, Phys. Rev. D 85 (2012) 125016 [arXiv:1202.5650] [INSPIRE].
  54. [54]
    O. Aharony, M. Berkooz and E. Silverstein, Multiple trace operators and nonlocal string theories, JHEP 08 (2001) 006 [hep-th/0105309] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    D. Anninos and D.M. Hofman, Infrared realization of dS 2 in AdS 2, Class. Quant. Grav. 35 (2018) 085003 [arXiv:1703.04622] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Victor Gorbenko
    • 1
    • 2
    Email author
  • Eva Silverstein
    • 2
  • Gonzalo Torroba
    • 3
  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  3. 3.Centro Atómico Bariloche and CONICETBarilocheArgentina

Personalised recommendations