Advertisement

The propagator seagull: general evaluation of a two loop diagram

  • Barak Kol
  • Ruth ShirEmail author
Open Access
Regular Article - Theoretical Physics
  • 31 Downloads

Abstract

We study a two loop diagram of propagator type with general parameters through the Symmetries of Feynman Integrals (SFI) method. We present the SFI group and equation system, the group invariant in parameter space and a general representation as a line integral over simpler diagrams. We present close form expressions for three sectors, each with three or four energy scales, for any spacetime dimension d as well as the ϵ expansion. We determine the singular locus and the diagram’s value on it.

Keywords

Perturbative QCD Scattering Amplitudes 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Wilczek, The Lightness of Being, Basic Books, New York U.S.A. (2010).Google Scholar
  2. [2]
    F. Wilczek, Physics in 100 Years, Phys. Today 69 (2016) 0432 [arXiv:1503.07735] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    B. Kol, Symmetries of Feynman integrals and the Integration By Parts method, arXiv:1507.01359 [INSPIRE].
  4. [4]
    B. Kol, The algebraic locus of Feynman integrals, arXiv:1604.07827 [INSPIRE].
  5. [5]
    B. Kol, Bubble diagram through the Symmetries of Feynman Integrals method, arXiv:1606.09257 [INSPIRE].
  6. [6]
    P. Burda, B. Kol and R. Shir, Vacuum seagull: Evaluating a three-loop Feynman diagram with three mass scales, Phys. Rev. D 96 (2017) 125013 [arXiv:1704.02187] [INSPIRE].
  7. [7]
    B. Kol, Algebraic aspects of when and how a Feynman diagram reduces to simpler ones, arXiv:1804.01175 [INSPIRE].
  8. [8]
    B. Kol, Two-loop vacuum diagram through the Symmetries of Feynman Integrals method, arXiv:1807.07471 [INSPIRE].
  9. [9]
    B. Kol and S. Mazumdar, Kite diagram through Symmetries of Feynman Integrals, Phys. Rev. D 99 (2019) 045018 [arXiv:1808.02494] [INSPIRE].
  10. [10]
    K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
  11. [11]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
  12. [12]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
  13. [13]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  14. [14]
    M. Caffo, H. Czyz, S. Laporta and E. Remiddi, Master equations for master amplitudes, Acta Phys. Polon. B 29 (1998) 2627 [hep-th/9807119] [INSPIRE].
  15. [15]
    V.A. Smirnov, Feynman integral calculus, Springer, Berlin Germany (2006).Google Scholar
  16. [16]
    V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250 (2012) 1 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    B. Ruijl, T. Ueda and J. Vermaseren, The diamond rule for multi-loop Feynman diagrams, Phys. Lett. B 746 (2015) 347 [arXiv:1504.08258] [INSPIRE].
  18. [18]
    O.V. Tarasov, Generalized recurrence relations for two loop propagator integrals with arbitrary masses, Nucl. Phys. B 502 (1997) 455 [hep-ph/9703319] [INSPIRE].
  19. [19]
    S. Bauberger, M. Böhm, G. Weiglein, F.A. Berends and M. Buza, Calculation of two-loop self-energies in the electroweak Standard Model, Nucl. Phys. Proc. Suppl. B 37 (1994) 95 [hep-ph/9406404] [INSPIRE].
  20. [20]
    A.I. Davydychev and M. Yu. Kalmykov, New results for the ϵ-expansion of certain one, two and three loop Feynman diagrams, Nucl. Phys. B 605 (2001) 266 [hep-th/0012189] [INSPIRE].
  21. [21]
    E.E. Boos and A.I. Davydychev, A Method of evaluating massive Feynman integrals, Theor. Math. Phys. 89 (1991) 1052 [Teor. Mat. Fiz. 89 (1991) 56] [INSPIRE].
  22. [22]
    R. Scharf and J.B. Tausk, Scalar two loop integrals for gauge boson selfenergy diagrams with a massless fermion loop, Nucl. Phys. B 412 (1994) 523 [INSPIRE].
  23. [23]
    S. Bauberger, F.A. Berends, M. Böhm and M. Buza, Analytical and numerical methods for massive two loop selfenergy diagrams, Nucl. Phys. B 434 (1995) 383 [hep-ph/9409388] [INSPIRE].
  24. [24]
    F. Jegerlehner and M. Yu. Kalmykov, O(ααs) correction to the pole mass of the t quark within the standard model, Nucl. Phys. B 676 (2004) 365 [hep-ph/0308216] [INSPIRE].
  25. [25]
    F. Jegerlehner and M.Y. Kalmykov, O(αα s) relation between pole- and MS-bar mass of the t quark, Acta Phys. Polon. B 34 (2003) 5335 [hep-ph/0310361] [INSPIRE].
  26. [26]
    V.V. Bytev, M. Yu. Kalmykov and B.A. Kniehl, HYPERDIRE, HYPERgeometric functions DIfferential REduction: MATHEMATICA-based packages for differential reduction of generalized hypergeometric functions p F p−1 , F 1 ,F 2 ,F 3 ,F 4, Comput. Phys. Commun. 184 (2013) 2332 [arXiv:1105.3565] [INSPIRE].
  27. [27]
    N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three Loop Relation of Quark (Modified) Ms and Pole Masses, Z. Phys. C 48 (1990) 673 [INSPIRE].
  28. [28]
    S.P. Martin and D.G. Robertson, TSIL: A Program for the calculation of two-loop self-energy integrals, Comput. Phys. Commun. 174 (2006) 133 [hep-ph/0501132] [INSPIRE].
  29. [29]
    S.P. Martin, Two loop scalar self energies in a general renormalizable theory at leading order in gauge couplings, Phys. Rev. D 70 (2004) 016005 [hep-ph/0312092] [INSPIRE].
  30. [30]
    S.P. Martin, Evaluation of two loop selfenergy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].
  31. [31]
    R.N. Lee and V.A. Smirnov, The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions, JHEP 12 (2012) 104 [arXiv:1209.0339] [INSPIRE].
  32. [32]
    E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].
  33. [33]
    A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].
  34. [34]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    R.N. Lee, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP 07 (2008) 031 [arXiv:0804.3008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.The Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations