Advertisement

Note on monopole operators in Chern-Simons-matter theories

  • Benjamin AsselEmail author
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

Monopole operators in Chern-Simons theories with charged matter have been studied using the state-operator map in CFTs, as states on ℝ × S2 with background magnetic flux on S2. Gauge invariance requires a dressing with matter modes which provides non-zero spin to the monopoles. In this note we propose a description of the monopole operators directly on ℝ3, as a singular behavior of the gauge and matter fields in the vicinity of the insertion point, with a dressing. We study abelian theories with a charged boson or a charged fermion. We extend the discussion to abelian supersymmetric Chern-Simons-matter theories and describe the BPS monopoles, which have spin and preserve a single supercharge. We match our results against the prediction from the superconformal index.

Keywords

Chern-Simons Theories Field Theories in Lower Dimensions Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Borokhov, Monopole operators in three-dimensional N = 4 SYM and mirror symmetry, JHEP 03 (2004) 008 [hep-th/0310254] [INSPIRE].
  4. [4]
    N. Read and S. Sachdev, Valence-bond and spin-Peierls ground states of low-dimensional quantum antiferromagnets, Phys. Rev. Lett. 62 (1989) 1694 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Read and S. Sachdev, Spin-Peierls, valence-bond solid and Neel ground states of low-dimensional quantum antiferromagnets, Phys. Rev. B 42 (1990) 4568 [INSPIRE].
  6. [6]
    T. Senthil, Deconfined quantum critical points, Science 303 (2004) 1490 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Senthil et al., Quantum criticality beyond the Landau-Ginzburg-Wilson paradigm, cond-mat/0312617.
  8. [8]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A duality web in 2 + 1 dimensions and condensed matter physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].
  10. [10]
    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].
  11. [11]
    Z. Komargodski and N. Seiberg, A symmetry breaking scenario for QCD 3, JHEP 01 (2018) 109 [arXiv:1706.08755] [INSPIRE].
  12. [12]
    F. Benini, Three-dimensional dualities with bosons and fermions, JHEP 02 (2018) 068 [arXiv:1712.00020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    K. Jensen, A master bosonization duality, JHEP 01 (2018) 031 [arXiv:1712.04933] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    F. Benini and S. Benvenuti, \( \mathcal{N}=1 \) dualities in 2 + 1 dimensions, JHEP 11 (2018) 197 [arXiv:1803.01784] [INSPIRE].
  15. [15]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].
  16. [16]
    I. Affleck, J.A. Harvey and E. Witten, Instantons and (super)symmetry breaking in (2 + 1)-dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].
  17. [17]
    O. Aharony et al., Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].
  18. [18]
    O. Aharony, IR duality in d = 3 N = 2 supersymmetric USp(2N c) and U (N c) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].
  19. [19]
    S. Benvenuti and S. Pasquetti, 3d \( \mathcal{N}=2 \) mirror symmetry, pq-webs and monopole superpotentials, JHEP 08 (2016) 136 [arXiv:1605.02675] [INSPIRE].
  20. [20]
    F. Benini, S. Benvenuti and S. Pasquetti, SUSY monopole potentials in 2 + 1 dimensions, JHEP 08 (2017) 086 [arXiv:1703.08460] [INSPIRE].
  21. [21]
    S. Benvenuti and S. Giacomelli, Abelianization and sequential confinement in 2 + 1 dimensions, JHEP 10 (2017) 173 [arXiv:1706.04949] [INSPIRE].
  22. [22]
    F. Benini and S. Benvenuti, N = 1 QED in 2 + 1 dimensions: dualities and enhanced symmetries, arXiv:1804.05707 [INSPIRE].
  23. [23]
    S.M. Chester, L.V. Iliesiu, M. Mezei and S.S. Pufu, Monopole operators in U(1) Chern-Simons-matter theories, JHEP 05 (2018) 157 [arXiv:1710.00654] [INSPIRE].
  24. [24]
    T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys. B 107 (1976) 365 [INSPIRE].
  25. [25]
    T.T. Wu and C.N. Yang, Some properties of monopole harmonics, Phys. Rev. D 16 (1977) 1018 [INSPIRE].
  26. [26]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, arXiv:1612.00809 [INSPIRE].
  27. [27]
    G.W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].
  28. [28]
    S.S. Pufu, Anomalous dimensions of monopole operators in three-dimensional quantum electrodynamics, Phys. Rev. D 89 (2014) 065016 [arXiv:1303.6125] [INSPIRE].
  29. [29]
    S.M. Chester, M. Mezei, S.S. Pufu and I. Yaakov, Monopole operators from the 4 − ϵ expansion, JHEP 12 (2016) 015 [arXiv:1511.07108] [INSPIRE].
  30. [30]
    D. Radičević, Disorder operators in Chern-Simons-fermion theories, JHEP 03 (2016) 131 [arXiv:1511.01902] [INSPIRE].ADSzbMATHGoogle Scholar
  31. [31]
    E. Dyer, M. Mezei and S.S. Pufu, Monopole taxonomy in three-dimensional conformal field theories, arXiv:1309.1160 [INSPIRE].
  32. [32]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian Geometry I, Math. Proc. Cambridge Phil. Soc. 77 (1975) 43.Google Scholar
  33. [33]
    M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Phil. Soc. 78 (1976) 405.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Phil. Soc. 79 (1976) 71.Google Scholar
  35. [35]
    E. Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].
  36. [36]
    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3, JHEP 09 (2011) 005 [arXiv:1105.2299] [INSPIRE].
  38. [38]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric states in large N Chern-Simons-matter theories, JHEP 02 (2012) 022 [arXiv:1104.0680] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3, 5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    A. Kapustin and B. Willett, Generalized superconformal index for three dimensional field theories, arXiv:1106.2484 [INSPIRE].
  42. [42]
    O. Aharony, P. Narayan and T. Sharma, On monopole operators in supersymmetric Chern-Simons-matter theories, JHEP 05 (2015) 117 [arXiv:1502.00945] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
  44. [44]
    S. Cremonesi, N. Mekareeya and A. Zaffaroni, The moduli spaces of 3d \( \mathcal{N}\ge 2 \) Chern-Simons gauge theories and their Hilbert series, JHEP 10 (2016) 046 [arXiv:1607.05728] [INSPIRE].
  45. [45]
    B. Assel, The Space of Vacua of 3d \( \mathcal{N}=3 \) abelian theories, JHEP 08 (2017) 011 [arXiv:1706.00793] [INSPIRE].
  46. [46]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the theta-angle in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].
  47. [47]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].
  48. [48]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theory DepartmentCERNGeneva 23Switzerland

Personalised recommendations