Advertisement

Biνo phenomenology at the LHC

  • Julia Gehrlein
  • Seyda IpekEmail author
  • Patrick J. Fox
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We study the LHC constraints on an R-symmetric SUSY model, where the neutrino masses are generated through higher dimensional operators involving the pseudo-Dirac bino, named biνo. We consider a particle spectrum where the squarks are heavier than the lightest neutralino, which is a pure biνo. The biνo is produced through squark decays and it subsequently decays to a combination of jets and leptons, with or without missing energy, via its mixing with the Standard Model neutrinos. We recast the most recent LHC searches for jets+ Open image in new window with \( \sqrt{s}=13 \) TeV and \( \mathrm{\mathcal{L}} \) = 36 fb−1 of data to determine the constraints on the squark and biνo masses in this model. We find that squarks as light as 350 GeV are allowed if the biνo is lighter than 150 GeV and squarks heavier than 950 GeV are allowed for any biνo mass. We also present forecasts for the LHC with \( \sqrt{s}=13 \) TeV and \( \mathrm{\mathcal{L}} \) = 300 fb−1 and show that squarks up to 1150 GeV can be probed.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
  2. [2]
  3. [3]
    L.J. Hall and L. Randall, U(1)-R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Fayet, Fermi-Bose Hypersymmetry, Nucl. Phys. B 113 (1976) 135 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].ADSGoogle Scholar
  7. [7]
    E. Dudas, M. Goodsell, L. Heurtier and P. Tziveloglou, Flavour models with Dirac and fake gluinos, Nucl. Phys. B 884 (2014) 632 [arXiv:1312.2011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    R. Fok, G.D. Kribs, A. Martin and Y. Tsai, Electroweak Baryogenesis in R-symmetric Supersymmetry, Phys. Rev. D 87 (2013) 055018 [arXiv:1208.2784] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Ipek and J. March-Russell, Baryogenesis via Particle-Antiparticle Oscillations, Phys. Rev. D 93 (2016) 123528 [arXiv:1604.00009] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].
  11. [11]
    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].
  12. [12]
    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].
  13. [13]
    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
  14. [14]
    C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, “L = R U(1)R Lepton Number at the LHC, JHEP 05 (2013) 012 [arXiv:1210.5257] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Alvarado, A. Delgado and A. Martin, Constraining the R-symmetric chargino NLSP at the LHC, Phys. Rev. D 97 (2018) 115044 [arXiv:1803.00624] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P. Diessner, W. Kotlarski, S. Liebschner and D. Stöckinger, Squark production in R-symmetric SUSY with Dirac gluinos: NLO corrections, JHEP 10 (2017) 142 [arXiv:1707.04557] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Kalinowski, SUSY with R-symmetry: confronting EW precision observables and LHC constraints, Acta Phys. Polon. B 47 (2016) 203 [arXiv:1510.06652] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    P. Coloma and S. Ipek, Neutrino masses from a pseudo-Dirac Bino, Phys. Rev. Lett. 117 (2016) 111803 [arXiv:1606.06372] [INSPIRE].
  19. [19]
    K. Benakli and M.D. Goodsell, Dirac Gauginos, Gauge Mediation and Unification, Nucl. Phys. B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    K. Benakli and M.D. Goodsell, Dirac Gauginos in General Gauge Mediation, Nucl. Phys. B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].
  21. [21]
    M.D. Goodsell, Two-loop RGEs with Dirac gaugino masses, JHEP 01 (2013) 066 [arXiv:1206.6697] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C. Cheung, F. D’Eramo and J. Thaler, The Spectrum of Goldstini and Modulini, JHEP 08 (2011) 115 [arXiv:1104.2600] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    R.N. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  27. [27]
    MEG collaboration, Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  28. [28]
    Mu2e collaboration, Mu2e Technical Design Report, arXiv:1501.05241 [INSPIRE].
  29. [29]
    G.D. Kribs, A. Martin and T.S. Roy, Supersymmetry with a Chargino NLSP and Gravitino LSP, JHEP 01 (2009) 023 [arXiv:0807.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [INSPIRE].
  31. [31]
    D. Gorbunov, A. Khmelnitsky and V. Rubakov, Is gravitino still a warm dark matter candidate?, JHEP 12 (2008) 055 [arXiv:0805.2836] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Cheung, G. Elor and L. Hall, Gravitino Freeze-In, Phys. Rev. D 84 (2011) 115021 [arXiv:1103.4394] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Monteux and C.S. Shin, Thermal Goldstino Production with Low Reheating Temperatures, Phys. Rev. D 92 (2015) 035002 [arXiv:1505.03149] [INSPIRE].ADSGoogle Scholar
  34. [34]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, ATLAS-CONF-2017-022 (2017).
  35. [35]
    CMS collaboration, Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV, Phys. Lett. B 758 (2016) 152 [arXiv:1602.06581] [INSPIRE].
  36. [36]
    CMS collaboration, Inclusive search for supersymmetry using razor variables in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 95 (2017) 012003 [arXiv:1609.07658] [INSPIRE].
  37. [37]
    CMS collaboration, Search for supersymmetry in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV, Phys. Rev. D 96 (2017) 032003 [arXiv:1704.07781] [INSPIRE].
  38. [38]
    ATLAS collaboration, Search for gluinos in events with an isolated lepton, jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 565 [arXiv:1605.04285] [INSPIRE].
  39. [39]
    ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 94 (2016) 052009 [arXiv:1606.03903] [INSPIRE].
  40. [40]
    CMS collaboration, Searches for R-parity-violating supersymmetry in ppcollisions at \( \sqrt{s}=8 \) TeV in final states with 0-4 leptons, Phys. Rev. D 94 (2016) 112009 [arXiv:1606.08076] [INSPIRE].
  41. [41]
    ATLAS collaboration, Search for squarks and gluinos in events with hadronically decaying tau leptons, jets and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV recorded with the ATLAS detector, Eur. Phys. J. C 76 (2016) 683 [arXiv:1607.05979] [INSPIRE].
  42. [42]
    ATLAS collaboration, Search for scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, New J. Phys. 18 (2016) 093016 [arXiv:1605.06035] [INSPIRE].
  43. [43]
    CMS collaboration, Search for new phenomena with multiple charged leptons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 77 (2017) 635 [arXiv:1701.06940] [INSPIRE].
  44. [44]
    CMS collaboration, Search for pair production of second generation leptoquarks at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-17-003 (2017).
  45. [45]
    M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal Flavour Seesaw Models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  47. [47]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  49. [49]
    DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  50. [50]
    P. Asadi, M.R. Buckley, A. DiFranzo, A. Monteux and D. Shih, Digging Deeper for New Physics in the LHC Data, JHEP 11 (2017) 194 [arXiv:1707.05783] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    N. Kumar and S.P. Martin, Vectorlike Leptons at the Large Hadron Collider, Phys. Rev. D 92 (2015) 115018 [arXiv:1510.03456] [INSPIRE].ADSGoogle Scholar
  52. [52]
  53. [53]
    ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collisions, JHEP 07 (2012) 167 [arXiv:1206.1760] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Instituto de Física Teórica UAM/CSICMadridSpain
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  3. 3.Department of Physics and AstronomyUniversity of CaliforniaIrvineU.S.A.
  4. 4.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.

Personalised recommendations