Advertisement

Spinning constraints on chaotic large c CFTs

  • Chi-Ming Chang
  • David M. Ramirez
  • Mukund RangamaniEmail author
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We study out-of-time ordered four-point functions in two dimensional conformal field theories by suitably analytically continuing the Euclidean correlator. For large central charge theories with a sparse spectrum, chaotic dynamics is revealed in an exponential decay; this is seen directly in the contribution of the vacuum block to the correlation function. However, contributions from individual non-vacuum blocks with large spin and small twist dominate over the vacuum block. We argue, based on holographic intuition, that suitable summations over such intermediate states in the block decomposition of the correlator should be sub-dominant, and attempt to use this criterion to constrain the OPE data with partial success. Along the way we also discuss the relation between the spinning Virasoro blocks and the on-shell worldline action of spinning particles in an asymptotically AdS spacetime.

Keywords

AdS-CFT Correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS 3, JHEP 05 (2018) 085 [arXiv:1803.04423] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    G. Giribet, C. Hull, M. Kleban, M. Porrati and E. Rabinovici, Superstrings on AdS 3 at ∥ = 1, JHEP 08 (2018) 204 [arXiv:1803.04420] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Kitaev, A simple model of quantum holography, Talks at Kavli Institute for Theoretical Physics (KITP), Santa Barbara U.S.A. (2015).Google Scholar
  7. [7]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Murugan, D. Stanford and E. Witten, More on Supersymmetric and 2d Analogs of the SYK Model, JHEP 08 (2017) 146 [arXiv:1706.05362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Bulycheva, \( \mathcal{N} \) = 2 SYK model in the superspace formalism, JHEP 04 (2018) 036 [arXiv:1801.09006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    C. Peng, \( \mathcal{N} \) = (0, 2) SYK, Chaos and Higher-Spins, JHEP 12 (2018) 065 [arXiv:1805.09325] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Perlmutter, Bounding the Space of Holographic CFTs with Chaos, JHEP 10 (2016) 069 [arXiv:1602.08272] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.L. Fitzpatrick and J. Kaplan, A Quantum Correction To Chaos, JHEP 05 (2016) 070 [arXiv:1601.06164] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    C. Liu and D.A. Lowe, Notes on Scrambling in Conformal Field Theory, Phys. Rev. D 98 (2018) 126013 [arXiv:1808.09886] [INSPIRE].ADSGoogle Scholar
  17. [17]
    H.R. Hampapura, A. Rolph and B. Stoica, Scrambling in Two-Dimensional Conformal Field Theories with Light and Smeared Operators, arXiv:1809.09651 [INSPIRE].
  18. [18]
    M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP 10 (2018) 127 [arXiv:1801.00010] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    F.M. Haehl and M. Rozali, Effective Field Theory for Chaotic CFTs, JHEP 10 (2018) 118 [arXiv:1808.02898] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: Recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.CrossRefGoogle Scholar
  22. [22]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    C.-M. Chang and Y.-H. Lin, Bootstrapping 2D CFTs in the Semiclassical Limit, JHEP 08 (2016) 056 [arXiv:1510.02464] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    C.-M. Chang and Y.-H. Lin, Bootstrap, universality and horizons, JHEP 10 (2016) 068 [arXiv:1604.01774] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    Y. Kusuki and T. Takayanagi, Renyi entropy for local quenches in 2D CFT from numerical conformal blocks, JHEP 01 (2018) 115 [arXiv:1711.09913] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Y. Kusuki, New Properties of Large-c Conformal Blocks from Recursion Relation, JHEP 07 (2018) 010 [arXiv:1804.06171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Y. Kusuki, Large c Virasoro Blocks from Monodromy Method beyond Known Limits, JHEP 08 (2018) 161 [arXiv:1806.04352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    Y. Kusuki, Light Cone Bootstrap in General 2D CFTs and Entanglement from Light Cone Singularity, JHEP 01 (2019) 025 [arXiv:1810.01335] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Haag, Local quantum physics: Fields, particles, algebras, Springer-Verlag, Berlin Germany (1992).CrossRefzbMATHGoogle Scholar
  30. [30]
    T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP 05 (2016) 099 [arXiv:1509.00014] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F.M. Haehl, R. Loganayagam, P. Narayan and M. Rangamani, Classification of out-of-time-order correlators, SciPost Phys. 6 (2019) 001 [arXiv:1701.02820] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP 04 (2017) 072 [arXiv:1609.07153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Collier, Y.-H. Lin and X. Yin, Modular Bootstrap Revisited, JHEP 09 (2018) 061 [arXiv:1608.06241] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    H. Chen, C. Hussong, J. Kaplan and D. Li, A Numerical Approach to Virasoro Blocks and the Information Paradox, JHEP 09 (2017) 102 [arXiv:1703.09727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    A. Belin, Permutation Orbifolds and Chaos, JHEP 11 (2017) 131 [arXiv:1705.08451] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Collier, Y. Gobeil, H. Maxfield and E. Perlmutter, Quantum Regge Trajectories and the Virasoro Analytic Bootstrap, arXiv:1811.05710 [INSPIRE].
  44. [44]
    D. Das, S. Datta and S. Pal, Universal asymptotics of three-point coefficients from elliptic representation of Virasoro blocks, Phys. Rev. D 98 (2018) 101901 [arXiv:1712.01842] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    M. Mathisson, Neue mechanik materieller systemes, Acta Phys. Polon. 6 (1937) 163 [INSPIRE].zbMATHGoogle Scholar
  47. [47]
    A. Papapetrou, Spinning test particles in general relativity. 1., Proc. Roy. Soc. Lond. A 209 (1951) 248 [INSPIRE].
  48. [48]
    W.G. Dixon, Dynamics of extended bodies in general relativity. II. Moments of the charge-current vector, Proc. Roy. Soc. Lond. A 319 (1970) 509 [INSPIRE].
  49. [49]
    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Caron-Huot, Analyticity in Spin in Conformal Theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Chi-Ming Chang
    • 1
  • David M. Ramirez
    • 1
  • Mukund Rangamani
    • 1
    Email author
  1. 1.Center for Quantum Mathematics and Physics (QMAP), Department of PhysicsUniversity of CaliforniaDavisU.S.A.

Personalised recommendations