Advertisement

Gravity dual of a multilayer system

  • Niko Jokela
  • José Manuel Penín
  • Alfonso V. Ramallo
  • Dimitrios ZoakosEmail author
Open Access
Regular Article - Theoretical Physics
  • 20 Downloads

Abstract

We construct a gravity dual to a system with multiple (2+1)-dimensional layers in a (3 + 1)-dimensional ambient theory. Following a top-down approach, we generate a geometry corresponding to the intersection of D3- and D5-branes along 2+1 dimensions. The D5-branes create a codimension one defect in the worldvolume of the D3-branes and are homogeneously distributed along the directions orthogonal to the defect. We solve the fully backreacted ten-dimensional supergravity equations of motion with smeared D5-brane sources. The solution is supersymmetric, has an intrinsic mass scale, and exhibits anisotropy at short distances in the gauge theory directions. We illustrate the running behavior in several observables, such as Wilson loops, entanglement entropy, and within thermodynamics of probe branes.

Keywords

AdS-CFT Correspondence D-branes Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  3. [3]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefzbMATHGoogle Scholar
  4. [4]
    A.V. Ramallo, Introduction to the AdS/CFT correspondence, Springer Proc. Phys. 161 (2015) 411 [arXiv:1310.4319] [INSPIRE].CrossRefzbMATHGoogle Scholar
  5. [5]
    J.D. Edelstein, J.P. Shock and D. Zoakos, The AdS/CFT Correspondence and Non-perturbative QCD, AIP Conf. Proc. 1116 (2009) 265 [arXiv:0901.2534] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    J. Erdmenger, Z. Guralnik and I. Kirsch, Four-dimensional superconformal theories with interacting boundaries or defects, Phys. Rev. D 66 (2002) 025020 [hep-th/0203020] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    K. Skenderis and M. Taylor, Branes in AdS and p p wave space-times, JHEP 06 (2002) 025 [hep-th/0204054] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Núñez, A. Paredes and A.V. Ramallo, Unquenched Flavor in the Gauge/Gravity Correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Kiritsis and V. Niarchos, Josephson Junctions and AdS/CFT Networks, JHEP 07 (2011) 112 [Erratum ibid. 10 (2011) 095] [arXiv:1105.6100] [INSPIRE].
  13. [13]
    D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Ammon, V.G. Filev, J. Tarrio and D. Zoakos, D3/D7 quark-gluon Plasma with Magnetically Induced Anisotropy, JHEP 09 (2012) 039 [arXiv:1207.1047] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Jain, N. Kundu, K. Sen, A. Sinha and S.P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Cheng, X.-H. Ge and S.-J. Sin, Anisotropic plasma at finite U(1) chemical potential, JHEP 07 (2014) 083 [arXiv:1404.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Banks and J.P. Gauntlett, A new phase for the anisotropic N = 4 super Yang-Mills plasma, JHEP 09 (2015) 126 [arXiv:1506.07176] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    D. Roychowdhury, On anisotropic black branes with Lifshitz scaling, Phys. Lett. B 759 (2016) 410 [arXiv:1509.05229] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    U. Gürsoy, I. Iatrakis, M. Järvinen and G. Nijs, Inverse Magnetic Catalysis from improved Holographic QCD in the Veneziano limit, JHEP 03 (2017) 053 [arXiv:1611.06339] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D. Giataganas, U. Gürsoy and J.F. Pedraza, Strongly-coupled anisotropic gauge theories and holography, Phys. Rev. Lett. 121 (2018) 121601 [arXiv:1708.05691] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Itsios, N. Jokela, J. Järvelä and A.V. Ramallo, Low-energy modes in anisotropic holographic fluids, Nucl. Phys. B 940 (2019) 264 [arXiv:1808.07035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    U. Gürsoy, M. Järvinen, G. Nijs and J.F. Pedraza, Inverse Anisotropic Catalysis in Holographic QCD, arXiv:1811.11724 [INSPIRE].
  23. [23]
    E. Conde, H. Lin, J.M. Penin, A.V. Ramallo and D. Zoakos, D3-D5 theories with unquenched flavors, Nucl. Phys. B 914 (2017) 599 [arXiv:1607.04998] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J.M. Penin, A.V. Ramallo and D. Zoakos, Anisotropic D3-D5 black holes with unquenched flavors, JHEP 02 (2018) 139 [arXiv:1710.00548] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Y. Bea, E. Conde, N. Jokela and A.V. Ramallo, Unquenched massive flavors and flows in Chern-Simons matter theories, JHEP 12 (2013) 033 [arXiv:1309.4453] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Arean, A.V. Ramallo and D. Rodriguez-Gomez, Mesons and Higgs branch in defect theories, Phys. Lett. B 641 (2006) 393 [hep-th/0609010] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    D. Arean, A.V. Ramallo and D. Rodriguez-Gomez, Holographic flavor on the Higgs branch, JHEP 05 (2007) 044 [hep-th/0703094] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Benvenuti, M. Mahato, L.A. Pando Zayas and Y. Tachikawa, The Gauge/gravity theory of blown up four cycles, hep-th/0512061 [INSPIRE].
  29. [29]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    F. Bigazzi, A.L. Cotrone, C. Núñez and A. Paredes, Heavy quark potential with dynamical flavors: A First order transition, Phys. Rev. D 78 (2008) 114012 [arXiv:0806.1741] [INSPIRE].ADSGoogle Scholar
  32. [32]
    F. Bigazzi, A.L. Cotrone and A. Paredes, Klebanov-Witten theory with massive dynamical flavors, JHEP 09 (2008) 048 [arXiv:0807.0298] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    F. Bigazzi, A.L. Cotrone, A. Paredes and A.V. Ramallo, The Klebanov-Strassler model with massive dynamical flavors, JHEP 03 (2009) 153 [arXiv:0812.3399] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    A.V. Ramallo, J.P. Shock and D. Zoakos, Holographic flavor in N = 4 gauge theories in 3d from wrapped branes, JHEP 02 (2009) 001 [arXiv:0812.1975] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    S.D. Avramis, K. Sfetsos and K. Siampos, Stability of strings dual to flux tubes between static quarks in N = 4 SYM, Nucl. Phys. B 769 (2007) 44 [hep-th/0612139] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S.D. Avramis, K. Sfetsos and K. Siampos, Stability of string configurations dual to quarkonium states in AdS/CFT, Nucl. Phys. B 793 (2008) 1 [arXiv:0706.2655] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    S.D. Avramis, K. Sfetsos and D. Zoakos, On the velocity and chemical-potential dependence of the heavy-quark interaction in N = 4 SYM plasmas, Phys. Rev. D 75 (2007) 025009 [hep-th/0609079] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S.D. Avramis, K. Sfetsos and D. Zoakos, Complex marginal deformations of D3-brane geometries, their Penrose limits and giant gravitons, Nucl. Phys. B 787 (2007) 55 [arXiv:0704.2067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    Y. Bea, N. Jokela, A. Pönni and A.V. Ramallo, Noncommutative massive unquenched ABJM, Int. J. Mod. Phys. A 33 (2018) 1850078 [arXiv:1712.03285] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    U. Kol, C. Núñez, D. Schofield, J. Sonnenschein and M. Warschawski, Confinement, Phase Transitions and non-Locality in the Entanglement Entropy, JHEP 06 (2014) 005 [arXiv:1403.2721] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. Georgiou and D. Zoakos, Entanglement entropy of the Klebanov-Strassler model with dynamical flavors, JHEP 07 (2015) 003 [arXiv:1505.01453] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  46. [46]
    O. Ben-Ami, D. Carmi and J. Sonnenschein, Holographic Entanglement Entropy of Multiple Strips, JHEP 11 (2014) 144 [arXiv:1409.6305] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    V.W. de Spinadel, The metallic means family and renormalization group techniques, Trudy Inst. Mat. i Mekh. UrO RAN 6 (2000) 173.Google Scholar
  48. [48]
    V. Balasubramanian, N. Jokela, A. Pönni and A.V. Ramallo, Information flows in strongly coupled ABJM theory, JHEP 01 (2019) 232 [arXiv:1811.09500] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: Some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    M. Ammon, M. Kaminski and A. Karch, Hyperscaling-Violation on Probe D-branes, JHEP 11 (2012) 028 [arXiv:1207.1726] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    G. Itsios, N. Jokela and A.V. Ramallo, Collective excitations of massive flavor branes, Nucl. Phys. B 909 (2016) 677 [arXiv:1602.06106] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    Y. Bea, N. Jokela and A.V. Ramallo, Quantum phase transitions with dynamical flavors, Phys. Rev. D 94 (2016) 026003 [arXiv:1604.03665] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Quantum Hall Effect in a Holographic Model, JHEP 10 (2010) 063 [arXiv:1003.4965] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    O. Bergman, N. Jokela, G. Lifschytz and M. Lippert, Striped instability of a holographic Fermi-like liquid, JHEP 10 (2011) 034 [arXiv:1106.3883] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    G.W. Semenoff, Engineering holographic graphene, AIP Conf. Proc. 1483 (2012) 305 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    H. Omid and G.W. Semenoff, D3-D7 Holographic dual of a perturbed 3D CFT, Phys. Rev. D 88 (2013) 026006 [arXiv:1208.5176] [INSPIRE].ADSGoogle Scholar
  57. [57]
    C. Kristjansen and G.W. Semenoff, Giant D5 Brane Holographic Hall State, JHEP 06 (2013) 048 [arXiv:1212.5609] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    N. Jokela, G. Lifschytz and M. Lippert, Magnetic effects in a holographic Fermi-like liquid, JHEP 05 (2012) 105 [arXiv:1204.3914] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    N. Jokela, G. Lifschytz and M. Lippert, Magneto-roton excitation in a holographic quantum Hall fluid, JHEP 02 (2011) 104 [arXiv:1012.1230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    N. Jokela, G. Lifschytz and M. Lippert, Holographic anyonic superfluidity, JHEP 10 (2013) 014 [arXiv:1307.6336] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    N. Jokela, G. Lifschytz and M. Lippert, Flowing holographic anyonic superfluid, JHEP 10 (2014) 21 [arXiv:1407.3794] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A.G. Grau, C. Kristjansen, M. Volk and M. Wilhelm, A Quantum Check of Non-Supersymmetric AdS/dCFT, JHEP 01 (2019) 007 [arXiv:1810.11463] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Geisler et al., Single-crystalline gold nanodisks on WS2 mono- and multilayers: Strong coupling at room temperature, arXiv:1812.09495.
  64. [64]
    C. Hoyos, D. Rodríguez Fernández, N. Jokela and A. Vuorinen, Holographic quark matter and neutron stars, Phys. Rev. Lett. 117 (2016) 032501 [arXiv:1603.02943] [INSPIRE].
  65. [65]
    C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Breaking the sound barrier in AdS/CFT, Phys. Rev. D 94 (2016) 106008 [arXiv:1609.03480] [INSPIRE].
  66. [66]
    C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Stiff phases in strongly coupled gauge theories with holographic duals, JHEP 11 (2017) 031 [arXiv:1707.00521] [INSPIRE].
  67. [67]
    E. Annala, C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Holographic compact stars meet gravitational wave constraints, JHEP 12 (2018) 078 [arXiv:1711.06244] [INSPIRE].
  68. [68]
    N. Jokela, M. Järvinen and J. Remes, Holographic QCD in the Veneziano limit and neutron stars, arXiv:1809.07770 [INSPIRE].
  69. [69]
    K. Yagi and N. Yunes, I-Love-Q, Science 341 (2013) 365 [arXiv:1302.4499] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Sieniawska, W. Turczanski, M. Bejger and J.L. Zdunik, Tidal deformability and other global parameters of compact stars with phase transitions, arXiv:1807.11581 [INSPIRE].
  71. [71]
    S.H. Alexander, K. Yagi and N. Yunes, An Entropy-Area Law for Neutron Stars Near the Black Hole Threshold, Class. Quant. Grav. 36 (2019) 015010 [arXiv:1810.01313] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G. Itsios, N. Jokela and A.V. Ramallo, Cold holographic matter in the Higgs branch, Phys. Lett. B 747 (2015) 229 [arXiv:1505.02629] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Helsinki Institute of PhysicsHelsinkiFinland
  3. 3.Departamento de Física de PartículasUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  4. 4.Instituto Galego de Física de Altas Enerxías (IGFAE)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  5. 5.Department of PhysicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations