Emergent geometry from stochastic dynamics, or Hawking evaporation in M(atrix) theory

  • Haoxing Du
  • Vatche SahakianEmail author
Open Access
Regular Article - Theoretical Physics


We develop an microscopic model of the M-theory Schwarzschild black hole using the Banks-Fischler-Shenker-Susskind Matrix formulation of quantum gravity. The underlying dynamics is known to be chaotic, which allows us to use methods from Random Matrix Theory and non-equilibrium statistical mechanics to propose a coarse-grained bottom-up picture of the event horizon — and the associated Hawking evaporation phenomenon. The analysis is possible due to a hierarchy between the various timescales at work. Event horizon physics is found to be non-local at the Planck scale, and we demonstrate how non-unitary physics and information loss arise from the process of averaging over the chaotic unitary dynamics. Most interestingly, we correlate the onset of non-unitarity with the emergence of spacetime geometry outside the horizon. We also write a mean field action for the evolution of qubits — represented by polarization states of supergravity modes. This evolution is shown to have similarities to a recent toy model of black hole evaporation proposed by Osuga and Page — a model aimed at developing a plausible no-firewall scenario.


Black Holes in String Theory M(atrix) Theories Gauge-gravity correspondence Quantum Dissipative Systems 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    D. Bigatti and L. Susskind, Review of matrix theory, NATO Sci. Ser. C 520 (1999) 277 [hep-th/9712072] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  3. [3]
    G.T. Horowitz and E.J. Martinec, Comments on black holes in matrix theory, Phys. Rev. D 57 (1998) 4935 [hep-th/9710217] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    T. Banks, W. Fischler, I.R. Klebanov and L. Susskind, Schwarzschild black holes from matrix theory, Phys. Rev. Lett. 80 (1998) 226 [hep-th/9709091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    T. Banks, W. Fischler, I.R. Klebanov and L. Susskind, Schwarzschild black holes in matrix theory. 2, JHEP 01 (1998) 008 [hep-th/9711005] [INSPIRE].
  6. [6]
    E. Berkowitz, M. Hanada and J. Maltz, Chaos in matrix models and black hole evaporation, Phys. Rev. D 94 (2016) 126009 [arXiv:1602.01473] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    M. Hanada, Numerical approach to SUSY quantum mechanics and the gauge/gravity duality, in Supersymmetric quantum mechanics and spectral design. Proceedings, Workshop, Benasque, Spain, 18–30 July 2010 [arXiv:1011.1284] [INSPIRE].
  8. [8]
    C.T. Asplund, D. Berenstein and E. Dzienkowski, Large N classical dynamics of holographic matrix models, Phys. Rev. D 87 (2013) 084044 [arXiv:1211.3425] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science 344 (2014) 882 [arXiv:1311.5607] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Berkowitz, M. Hanada and J. Maltz, A microscopic description of black hole evaporation via holography, Int. J. Mod. Phys. D 25 (2016) 1644002 [arXiv:1603.03055] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    M. Li, E.J. Martinec and V. Sahakian, Black holes and the SYM phase diagram, Phys. Rev. D 59 (1999) 044035 [hep-th/9809061] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    E.J. Martinec and V. Sahakian, Black holes and the super Yang-Mills phase diagram. 2, Phys. Rev. D 59 (1999) 124005 [hep-th/9810224] [INSPIRE].
  14. [14]
    S.B. Giddings, Models for unitary black hole disintegration, Phys. Rev. D 85 (2012) 044038 [arXiv:1108.2015] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.B. Giddings, Black holes, quantum information and unitary evolution, Phys. Rev. D 85 (2012) 124063 [arXiv:1201.1037] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    G. Gur-Ari, M. Hanada and S.H. Shenker, Chaos in classical D0-brane mechanics, JHEP 02 (2016) 091 [arXiv:1512.00019] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L. Susskind, Addendum to fast scramblers, arXiv:1101.6048 [INSPIRE].
  20. [20]
    J.L.F. Barbon and J.M. Magan, Chaotic fast scrambling at black holes, Phys. Rev. D 84 (2011) 106012 [arXiv:1105.2581] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the fast scrambling conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    L. Brady and V. Sahakian, Scrambling with matrix black holes, Phys. Rev. D 88 (2013) 046003 [arXiv:1306.5200] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Pramodh and V. Sahakian, From black hole to qubits: evidence of fast scrambling in BMN theory, JHEP 07 (2015) 067 [arXiv:1412.2396] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    J.M. Magan, Fast scramblers, democratic walks and information fields, arXiv:1507.02477 [INSPIRE].
  25. [25]
    H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka, Onset of random matrix behavior in scrambling systems, JHEP 07 (2018) 124 [Erratum ibid. 02 (2019) 197] [arXiv:1803.08050] [INSPIRE].
  26. [26]
    F.J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys. 3 (1962) 1191.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    L. Erdős and H.-T. Yau, A dynamical approach to random matrix theory, Courant Lect. Notes 28, American Mathematical Society, U.S.A. (2017).Google Scholar
  28. [28]
    G. Livan, M. Novaes and P. Vivo, Introduction to random matrices: theory and practice, SpringerBriefs Math. Phys. 26, Springer, Cham, Switzerland (2018).Google Scholar
  29. [29]
    P. Deift and D. Gioev, Random matrix theory: invariant ensembles and universality, Courant Institute of Mathematical Sciences, U.S.A. (2000).Google Scholar
  30. [30]
    B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE].
  31. [31]
    E. Rinaldi, E. Berkowitz, M. Hanada, J. Maltz and P. Vranas, Toward holographic reconstruction of bulk geometry from lattice simulations, JHEP 02 (2018) 042 [arXiv:1709.01932] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    R.C. Brower et al., Lattice ϕ 4 field theory on Riemann manifolds: numerical tests for the 2D Ising CFT on S 2, Phys. Rev. D 98 (2018) 014502 [arXiv:1803.08512] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.S. Cotler et al., Black holes and random matrices, JHEP 05 (2017) 118 [Erratum ibid. 09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
  34. [34]
    H. Risken, The Fokker-Planck equation, Springer-Verlag, Germany (1989).CrossRefzbMATHGoogle Scholar
  35. [35]
    D.S. Lemons, An introduction to stochastic processes in physics, John-Hopkins University Press, U.S.A. (2002).zbMATHGoogle Scholar
  36. [36]
    R. Mahnke, J. Kaupuzs and I. Lubashevsky, Physics of stochastic processes, Wiley-VCH Verlag, Germany (2009).zbMATHGoogle Scholar
  37. [37]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  38. [38]
    J.H. Traschen, An introduction to black hole evaporation, in Mathematical methods in physics. Proceedings, Winter School, Londrina, Brazil, 17–26 August 1999 [gr-qc/0010055] [INSPIRE].
  39. [39]
    D.N. Page, Hawking radiation and black hole thermodynamics, New J. Phys. 7 (2005) 203 [hep-th/0409024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    B.R. Majhi, Quantum tunneling in black holes, Ph.D. thesis, Calcutta U., Kolkata, India (2010) [arXiv:1110.6008] [INSPIRE].
  41. [41]
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    J.M. Magan, Black holes as random particles: entanglement dynamics in infinite range and matrix models, JHEP 08 (2016) 081 [arXiv:1601.04663] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    T. Banks, W. Fischler and I.R. Klebanov, Evaporation of Schwarzschild black holes in matrix theory, Phys. Lett. B 423 (1998) 54 [hep-th/9712236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].ADSGoogle Scholar
  48. [48]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
  49. [49]
    D.N. Kabat and W. Taylor, Spherical membranes in matrix theory, Adv. Theor. Math. Phys. 2 (1998) 181 [hep-th/9711078] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Uehara and S. Yamada, Wrapped membranes, matrix string theory and an infinite dimensional Lie algebra, JHEP 07 (2004) 043 [hep-th/0402012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    J. Castelino, S. Lee and W. Taylor, Longitudinal five-branes as four spheres in matrix theory, Nucl. Phys. B 526 (1998) 334 [hep-th/9712105] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    S. Ramgoolam, On spherical harmonics for fuzzy spheres in diverse dimensions, Nucl. Phys. B 610 (2001) 461 [hep-th/0105006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    W. Taylor, M(atrix) theory: matrix quantum mechanics as a fundamental theory, Rev. Mod. Phys. 73 (2001) 419 [hep-th/0101126] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Berenstein and E. Dzienkowski, Numerical evidence for firewalls, arXiv:1311.1168 [INSPIRE].
  57. [57]
    D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
  58. [58]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    L. Susskind, String theory and the principles of black hole complementarity, Phys. Rev. Lett. 71 (1993) 2367 [hep-th/9307168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].
  62. [62]
    U. Weiss, Quantum dissipative systems, World Scientific, Singapore (2011).Google Scholar
  63. [63]
    H.-K. Janssen, On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties, Z. Phys. B 23 (1976) 377.ADSGoogle Scholar
  64. [64]
    C. Grosche and F. Steiner, Handbook of Feynman path integrals, Springer Tracts Mod. Phys. 145 (1998) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    K. Osuga and D.N. Page, Qubit transport model for unitary black hole evaporation without firewalls, Phys. Rev. D 97 (2018) 066023 [arXiv:1607.04642] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Harvey Mudd College, Physics DepartmentClaremontU.S.A.

Personalised recommendations