# Emergent geometry from stochastic dynamics, or Hawking evaporation in M(atrix) theory

- 22 Downloads

## Abstract

We develop an microscopic model of the M-theory Schwarzschild black hole using the Banks-Fischler-Shenker-Susskind Matrix formulation of quantum gravity. The underlying dynamics is known to be chaotic, which allows us to use methods from Random Matrix Theory and non-equilibrium statistical mechanics to propose a coarse-grained bottom-up picture of the event horizon — and the associated Hawking evaporation phenomenon. The analysis is possible due to a hierarchy between the various timescales at work. Event horizon physics is found to be non-local at the Planck scale, and we demonstrate how non-unitary physics and information loss arise from the process of averaging over the chaotic unitary dynamics. Most interestingly, we correlate the onset of non-unitarity with the emergence of spacetime geometry outside the horizon. We also write a mean field action for the evolution of qubits — represented by polarization states of supergravity modes. This evolution is shown to have similarities to a recent toy model of black hole evaporation proposed by Osuga and Page — a model aimed at developing a plausible no-firewall scenario.

## Keywords

Black Holes in String Theory M(atrix) Theories Gauge-gravity correspondence Quantum Dissipative Systems## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]T. Banks, W. Fischler, S.H. Shenker and L. Susskind,
*M theory as a matrix model: a conjecture*,*Phys. Rev.***D 55**(1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [2]D. Bigatti and L. Susskind,
*Review of matrix theory*,*NATO Sci. Ser. C***520**(1999) 277 [hep-th/9712072] [INSPIRE].MathSciNetzbMATHGoogle Scholar - [3]G.T. Horowitz and E.J. Martinec,
*Comments on black holes in matrix theory*,*Phys. Rev.***D 57**(1998) 4935 [hep-th/9710217] [INSPIRE].ADSMathSciNetGoogle Scholar - [4]T. Banks, W. Fischler, I.R. Klebanov and L. Susskind,
*Schwarzschild black holes from matrix theory*,*Phys. Rev. Lett.***80**(1998) 226 [hep-th/9709091] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [5]T. Banks, W. Fischler, I.R. Klebanov and L. Susskind,
*Schwarzschild black holes in matrix theory.*2,*JHEP***01**(1998) 008 [hep-th/9711005] [INSPIRE]. - [6]E. Berkowitz, M. Hanada and J. Maltz,
*Chaos in matrix models and black hole evaporation*,*Phys. Rev.***D 94**(2016) 126009 [arXiv:1602.01473] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar - [7]M. Hanada,
*Numerical approach to SUSY quantum mechanics and the gauge/gravity duality*, in*Supersymmetric quantum mechanics and spectral design. Proceedings, Workshop*, Benasque, Spain, 18–30 July 2010 [arXiv:1011.1284] [INSPIRE]. - [8]C.T. Asplund, D. Berenstein and E. Dzienkowski,
*Large N classical dynamics of holographic matrix models*,*Phys. Rev.***D 87**(2013) 084044 [arXiv:1211.3425] [INSPIRE].ADSGoogle Scholar - [9]M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura,
*Holographic description of quantum black hole on a computer*,*Science***344**(2014) 882 [arXiv:1311.5607] [INSPIRE].ADSCrossRefGoogle Scholar - [10]E. Berkowitz, M. Hanada and J. Maltz,
*A microscopic description of black hole evaporation via holography*,*Int. J. Mod. Phys.***D 25**(2016) 1644002 [arXiv:1603.03055] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [11]N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz,
*Supergravity and the large N limit of theories with sixteen supercharges*,*Phys. Rev.***D 58**(1998) 046004 [hep-th/9802042] [INSPIRE].ADSMathSciNetGoogle Scholar - [12]M. Li, E.J. Martinec and V. Sahakian,
*Black holes and the SYM phase diagram*,*Phys. Rev.***D 59**(1999) 044035 [hep-th/9809061] [INSPIRE].ADSMathSciNetGoogle Scholar - [13]E.J. Martinec and V. Sahakian,
*Black holes and the super Yang-Mills phase diagram.*2,*Phys. Rev.***D 59**(1999) 124005 [hep-th/9810224] [INSPIRE]. - [14]S.B. Giddings,
*Models for unitary black hole disintegration*,*Phys. Rev.***D 85**(2012) 044038 [arXiv:1108.2015] [INSPIRE].ADSGoogle Scholar - [15]S.B. Giddings,
*Black holes, quantum information and unitary evolution*,*Phys. Rev.***D 85**(2012) 124063 [arXiv:1201.1037] [INSPIRE].ADSGoogle Scholar - [16]J. Maldacena, S.H. Shenker and D. Stanford,
*A bound on chaos*,*JHEP***08**(2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [17]G. Gur-Ari, M. Hanada and S.H. Shenker,
*Chaos in classical D*0*-brane mechanics*,*JHEP***02**(2016) 091 [arXiv:1512.00019] [INSPIRE].ADSCrossRefGoogle Scholar - [18]Y. Sekino and L. Susskind,
*Fast scramblers*,*JHEP***10**(2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar - [19]
- [20]J.L.F. Barbon and J.M. Magan,
*Chaotic fast scrambling at black holes*,*Phys. Rev.***D 84**(2011) 106012 [arXiv:1105.2581] [INSPIRE].ADSGoogle Scholar - [21]N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden,
*Towards the fast scrambling conjecture*,*JHEP***04**(2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [22]L. Brady and V. Sahakian,
*Scrambling with matrix black holes*,*Phys. Rev.***D 88**(2013) 046003 [arXiv:1306.5200] [INSPIRE].ADSGoogle Scholar - [23]S. Pramodh and V. Sahakian,
*From black hole to qubits: evidence of fast scrambling in BMN theory*,*JHEP***07**(2015) 067 [arXiv:1412.2396] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [24]
- [25]H. Gharibyan, M. Hanada, S.H. Shenker and M. Tezuka,
*Onset of random matrix behavior in scrambling systems*,*JHEP***07**(2018) 124 [*Erratum ibid.***02**(2019) 197] [arXiv:1803.08050] [INSPIRE]. - [26]F.J. Dyson,
*A Brownian-motion model for the eigenvalues of a random matrix*,*J. Math. Phys.***3**(1962) 1191.ADSMathSciNetCrossRefzbMATHGoogle Scholar - [27]L. Erdős and H.-T. Yau,
*A dynamical approach to random matrix theory*,*Courant Lect. Notes***28**, American Mathematical Society, U.S.A. (2017).Google Scholar - [28]G. Livan, M. Novaes and P. Vivo,
*Introduction to random matrices: theory and practice*,*SpringerBriefs Math. Phys.***26**, Springer, Cham, Switzerland (2018).Google Scholar - [29]P. Deift and D. Gioev,
*Random matrix theory: invariant ensembles and universality*, Courant Institute of Mathematical Sciences, U.S.A. (2000).Google Scholar - [30]
- [31]E. Rinaldi, E. Berkowitz, M. Hanada, J. Maltz and P. Vranas,
*Toward holographic reconstruction of bulk geometry from lattice simulations*,*JHEP***02**(2018) 042 [arXiv:1709.01932] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [32]R.C. Brower et al.,
*Lattice ϕ*^{4}*field theory on Riemann manifolds: numerical tests for the*2*D Ising CFT on S*^{2},*Phys. Rev.***D 98**(2018) 014502 [arXiv:1803.08512] [INSPIRE].ADSGoogle Scholar - [33]J.S. Cotler et al.,
*Black holes and random matrices*,*JHEP***05**(2017) 118 [*Erratum ibid.***09**(2018) 002] [arXiv:1611.04650] [INSPIRE]. - [34]H. Risken,
*The Fokker-Planck equation*, Springer-Verlag, Germany (1989).CrossRefzbMATHGoogle Scholar - [35]D.S. Lemons,
*An introduction to stochastic processes in physics*, John-Hopkins University Press, U.S.A. (2002).zbMATHGoogle Scholar - [36]R. Mahnke, J. Kaupuzs and I. Lubashevsky,
*Physics of stochastic processes*, Wiley-VCH Verlag, Germany (2009).zbMATHGoogle Scholar - [37]S.W. Hawking,
*Particle creation by black holes*,*Commun. Math. Phys.***43**(1975) 199 [*Erratum ibid.***46**(1976) 206] [INSPIRE]. - [38]J.H. Traschen,
*An introduction to black hole evaporation*, in*Mathematical methods in physics. Proceedings, Winter School*, Londrina, Brazil, 17–26 August 1999 [gr-qc/0010055] [INSPIRE]. - [39]D.N. Page,
*Hawking radiation and black hole thermodynamics*,*New J. Phys.***7**(2005) 203 [hep-th/0409024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [40]B.R. Majhi,
*Quantum tunneling in black holes*, Ph.D. thesis, Calcutta U., Kolkata, India (2010) [arXiv:1110.6008] [INSPIRE]. - [41]J.M. Maldacena,
*The large N limit of superconformal field theories and supergravity*,*Int. J. Theor. Phys.***38**(1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [42]E. Witten,
*Anti-de Sitter space and holography*,*Adv. Theor. Math. Phys.***2**(1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [43]S.S. Gubser, I.R. Klebanov and A.M. Polyakov,
*Gauge theory correlators from noncritical string theory*,*Phys. Lett.***B 428**(1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [44]N. Seiberg,
*Why is the matrix model correct?*,*Phys. Rev. Lett.***79**(1997) 3577 [hep-th/9710009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [45]J.M. Magan,
*Black holes as random particles: entanglement dynamics in infinite range and matrix models*,*JHEP***08**(2016) 081 [arXiv:1601.04663] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [46]T. Banks, W. Fischler and I.R. Klebanov,
*Evaporation of Schwarzschild black holes in matrix theory*,*Phys. Lett.***B 423**(1998) 54 [hep-th/9712236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [47]D.N. Page,
*Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole*,*Phys. Rev.***D 13**(1976) 198 [INSPIRE].ADSGoogle Scholar - [48]D.N. Page,
*Average entropy of a subsystem*,*Phys. Rev. Lett.***71**(1993) 1291 [gr-qc/9305007] [INSPIRE]. - [49]D.N. Kabat and W. Taylor,
*Spherical membranes in matrix theory*,*Adv. Theor. Math. Phys.***2**(1998) 181 [hep-th/9711078] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [50]S. Uehara and S. Yamada,
*Wrapped membranes, matrix string theory and an infinite dimensional Lie algebra*,*JHEP***07**(2004) 043 [hep-th/0402012] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [51]J. Castelino, S. Lee and W. Taylor,
*Longitudinal five-branes as four spheres in matrix theory*,*Nucl. Phys.***B 526**(1998) 334 [hep-th/9712105] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [52]S. Ramgoolam,
*On spherical harmonics for fuzzy spheres in diverse dimensions*,*Nucl. Phys.***B 610**(2001) 461 [hep-th/0105006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [53]W. Taylor,
*M(atrix) theory: matrix quantum mechanics as a fundamental theory*,*Rev. Mod. Phys.***73**(2001) 419 [hep-th/0101126] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [54]A. Almheiri, D. Marolf, J. Polchinski and J. Sully,
*Black holes: complementarity or firewalls?*,*JHEP***02**(2013) 062 [arXiv:1207.3123] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [55]A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully,
*An apologia for firewalls*,*JHEP***09**(2013) 018 [arXiv:1304.6483] [INSPIRE].ADSCrossRefGoogle Scholar - [56]
- [57]D. Harlow and P. Hayden,
*Quantum computation vs. firewalls*,*JHEP***06**(2013) 085 [arXiv:1301.4504] [INSPIRE]. - [58]L. Susskind, L. Thorlacius and J. Uglum,
*The stretched horizon and black hole complementarity*,*Phys. Rev.***D 48**(1993) 3743 [hep-th/9306069] [INSPIRE].ADSMathSciNetGoogle Scholar - [59]L. Susskind,
*String theory and the principles of black hole complementarity*,*Phys. Rev. Lett.***71**(1993) 2367 [hep-th/9307168] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [60]D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum,
*Black hole complementarity versus locality*,*Phys. Rev.***D 52**(1995) 6997 [hep-th/9506138] [INSPIRE].ADSMathSciNetGoogle Scholar - [61]
- [62]U. Weiss,
*Quantum dissipative systems*, World Scientific, Singapore (2011).Google Scholar - [63]H.-K. Janssen,
*On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties*,*Z. Phys.***B 23**(1976) 377.ADSGoogle Scholar - [64]C. Grosche and F. Steiner,
*Handbook of Feynman path integrals*,*Springer Tracts Mod. Phys.***145**(1998) 1.MathSciNetCrossRefzbMATHGoogle Scholar - [65]K. Osuga and D.N. Page,
*Qubit transport model for unitary black hole evaporation without firewalls*,*Phys. Rev.***D 97**(2018) 066023 [arXiv:1607.04642] [INSPIRE].ADSMathSciNetGoogle Scholar