Advertisement

Dihedral flavor group as the key to understand quark and lepton flavor mixing

  • Jun-Nan Lu
  • Gui-Jun DingEmail author
Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

We have studied the lepton and quark mixing patterns which can be derived from the dihedral group Dn in combination with CP symmetry. The left-handed lepton and quark doublets are assigned to the direct sum of a singlet and a doublet of Dn. A unified description of the observed structure of the quark and lepton mixing can be achieved if the flavor group Dn and CP are broken to Z2 × CP in neutrino, charged lepton, up quark and down quark sectors, and the minimal group is D14. We also consider another scenario in which the residual symmetry of the charged lepton and up quark sector is Z2 while Z2 × CP remains preserved by the neutrino and down quark mass matrices. Then D7 can give the experimentally favored values of CKM and PMNS mixing matrices.

Keywords

CP violation Discrete Symmetries Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  2. [2]
    I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23 , δ CP and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T2K collaboration, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ν e interactions at the far detector, Phys. Rev. D 96 (2017) 092006 [Erratum ibid. D 98 (2018) 019902] [arXiv:1707.01048] [INSPIRE].
  4. [4]
    NOvA collaboration, New constraints on oscillation parameters from ν e appearance and ν μ disappearance in the NOvA experiment, Phys. Rev. D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
  5. [5]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Capozzi, E. Lisi, A. Marrone and A. Palazzo, Current unknowns in the three neutrino framework, Prog. Part. Nucl. Phys. 102 (2018) 48 [arXiv:1804.09678] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C.S. Lam, Symmetry of lepton mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Blum, C. Hagedorn and M. Lindner, Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Holthausen and K.S. Lim, Quark and leptonic mixing patterns from the breakdown of a common discrete flavor symmetry, Phys. Rev. D 88 (2013) 033018 [arXiv:1306.4356] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Araki, H. Ishida, H. Ishimori, T. Kobayashi and A. Ogasahara, CKM matrix and flavor symmetries, Phys. Rev. D 88 (2013) 096002 [arXiv:1309.4217] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.-Y. Yao and G.-J. Ding, Lepton and quark mixing patterns from finite flavor symmetries, Phys. Rev. D 92 (2015) 096010 [arXiv:1505.03798] [INSPIRE].ADSGoogle Scholar
  12. [12]
    I. de Medeiros Varzielas, R.W. Rasmussen and J. Talbert, Bottom-up discrete symmetries for Cabibbo mixing, Int. J. Mod. Phys. A 32 (2017) 1750047 [arXiv:1605.03581] [INSPIRE].CrossRefzbMATHGoogle Scholar
  13. [13]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Holthausen, M. Lindner and M.A. Schmidt, CP and discrete flavour symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M. Ratz and A. Trautner, CP violation from finite groups, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. Chen, C.-C. Li and G.-J. Ding, Lepton flavor mixing and CP symmetry, Phys. Rev. D 91 (2015) 033003 [arXiv:1412.8352] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Chen, C.-Y. Yao and G.-J. Ding, Neutrino mixing from CP symmetry, Phys. Rev. D 92 (2015) 073002 [arXiv:1507.03419] [INSPIRE].ADSGoogle Scholar
  18. [18]
    L.L. Everett, T. Garon and A.J. Stuart, A bottom-up approach to lepton flavor and CP symmetries, JHEP 04 (2015) 069 [arXiv:1501.04336] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    L.L. Everett and A.J. Stuart, Lepton sector phases and their roles in flavor and generalized CP symmetries, Phys. Rev. D 96 (2017) 035030 [arXiv:1611.03020] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    P. Chen, G.-J. Ding, F. Gonzalez-Canales and J.W.F. Valle, Generalized μτ reflection symmetry and leptonic CP-violation, Phys. Lett. B 753 (2016) 644 [arXiv:1512.01551] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Chen, G.-J. Ding, F. Gonzalez-Canales and J.W.F. Valle, Classifying CP transformations according to their texture zeros: theory and implications, Phys. Rev. D 94 (2016) 033002 [arXiv:1604.03510] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Chen, S. Centelles Chuliá, G.-J. Ding, R. Srivastava and J.W.F. Valle, Neutrino predictions from generalized CP symmetries of charged leptons, JHEP 07 (2018) 077 [arXiv:1802.04275] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Chen, S. Centelles Chuliá, G.-J. Ding, R. Srivastava and J.W.F. Valle, Realistic tribimaximal neutrino mixing, Phys. Rev. D 98 (2018) 055019 [arXiv:1806.03367] [INSPIRE].ADSGoogle Scholar
  24. [24]
    P. Chen, S. Centelles Chuliá, G.-J. Ding, R. Srivastava and J.W.F. Valle, CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I, JHEP 03 (2019) 036 [arXiv:1812.04663] [INSPIRE].
  25. [25]
    G.-J. Ding, S.F. King and A.J. Stuart, Generalised CP and A 4 family symmetry, JHEP 12 (2013) 006 [arXiv:1307.4212] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.-C. Li, J.-N. Lu and G.-J. Ding, A 4 and CP symmetry and a model with maximal CP-violation, Nucl. Phys. B 913 (2016) 110 [arXiv:1608.01860] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum alignment in S 4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Feruglio, C. Hagedorn and R. Ziegler, A realistic pattern of lepton mixing and masses from S 4 and CP, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C.-C. Li and G.-J. Ding, Generalised CP and trimaximal TM 1 lepton mixing in S 4 family symmetry, Nucl. Phys. B 881 (2014) 206 [arXiv:1312.4401] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    C.-C. Li and G.-J. Ding, Deviation from bimaximal mixing and leptonic CP phases in S 4 family symmetry and generalized CP, JHEP 08 (2015) 017 [arXiv:1408.0785] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.-N. Lu and G.-J. Ding, Alternative schemes of predicting lepton mixing parameters from discrete flavor and CP symmetry, Phys. Rev. D 95 (2017) 015012 [arXiv:1610.05682] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J.T. Penedo, S.T. Petcov and A.V. Titov, Neutrino mixing and leptonic CP-violation from S 4 flavour and generalised CP symmetries, JHEP 12 (2017) 022 [arXiv:1705.00309] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G.C. Branco, I. de Medeiros Varzielas and S.F. King, Invariant approach to CP in family symmetry models, Phys. Rev. D 92 (2015) 036007 [arXiv:1502.03105] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    G.C. Branco, I. de Medeiros Varzielas and S.F. King, Invariant approach to CP in unbroken Δ(27), Nucl. Phys. B 899 (2015) 14 [arXiv:1505.06165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    G.-J. Ding and Y.-L. Zhou, Predicting lepton flavor mixing from Δ(48) and generalized CP symmetries, Chin. Phys. C 39 (2015) 021001 [arXiv:1312.5222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    G.-J. Ding and Y.-L. Zhou, Lepton mixing parameters from Δ(48) family symmetry and generalised CP, JHEP 06 (2014) 023 [arXiv:1404.0592] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C.-C. Li and G.-J. Ding, Lepton mixing in A 5 family symmetry and generalized CP, JHEP 05 (2015) 100 [arXiv:1503.03711] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Di Iura, C. Hagedorn and D. Meloni, Lepton mixing from the interplay of the alternating group A 5 and CP, JHEP 08 (2015) 037 [arXiv:1503.04140] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    P. Ballett, S. Pascoli and J. Turner, Mixing angle and phase correlations from A 5 with generalized CP and their prospects for discovery, Phys. Rev. D 92 (2015) 093008 [arXiv:1503.07543] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Turner, Predictions for leptonic mixing angle correlations and nontrivial Dirac CP-violation from A 5 with generalized CP symmetry, Phys. Rev. D 92 (2015) 116007 [arXiv:1507.06224] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Di Iura, M.L. López-Ibáñez and D. Meloni, Neutrino masses and lepton mixing from A 5 × CP, arXiv:1811.09662 [INSPIRE].
  42. [42]
    G.-J. Ding and S.F. King, Generalized CP and Δ(96) family symmetry, Phys. Rev. D 89 (2014) 093020 [arXiv:1403.5846] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Hagedorn, A. Meroni and E. Molinaro, Lepton mixing from Δ(3n 2) and Δ(6n 2) and CP, Nucl. Phys. B 891 (2015) 499 [arXiv:1408.7118] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    G.-J. Ding and S.F. King, Generalized CP and Δ(3n 2) family symmetry for semi-direct predictions of the PMNS matrix, Phys. Rev. D 93 (2016) 025013 [arXiv:1510.03188] [INSPIRE].ADSGoogle Scholar
  45. [45]
    G.-J. Ding, S.F. King and T. Neder, Generalised CP and Δ(6n 2) family symmetry in semi-direct models of leptons, JHEP 12 (2014) 007 [arXiv:1409.8005] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    C.-C. Li, C.-Y. Yao and G.-J. Ding, Lepton mixing predictions from infinite group series D 9 n,3 n(1) with generalized CP, JHEP 05 (2016) 007 [arXiv:1601.06393] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Chen, G.-J. Ding and S.F. King, Leptogenesis and residual CP symmetry, JHEP 03 (2016) 206 [arXiv:1602.03873] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Hagedorn and E. Molinaro, Flavor and CP symmetries for leptogenesis and 0νββ decay, Nucl. Phys. B 919 (2017) 404 [arXiv:1602.04206] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    C.-C. Li and G.-J. Ding, Implications of residual CP symmetry for leptogenesis in a model with two right-handed neutrinos, Phys. Rev. D 96 (2017) 075005 [arXiv:1701.08508] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C.-C. Li, J.-N. Lu and G.-J. Ding, Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries, JHEP 02 (2018) 038 [arXiv:1706.04576] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J.-N. Lu and G.-J. Ding, Quark and lepton mixing patterns from a common discrete flavor symmetry with a generalized CP symmetry, Phys. Rev. D 98 (2018) 055011 [arXiv:1806.02301] [INSPIRE].ADSGoogle Scholar
  52. [52]
    C. Hagedorn and J. König, Lepton and quark mixing from stepwise breaking of flavor and CP, arXiv:1811.07750 [INSPIRE].
  53. [53]
    C. Hagedorn and J. König, Lepton and quark masses and mixing in a SUSY model with Δ(384) and CP, arXiv:1811.09262 [INSPIRE].
  54. [54]
    E. Ma, Cobimaximal neutrino mixing from S 3 × Z 2, Phys. Lett. B 777 (2018) 332 [arXiv:1707.03352] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C.-Y. Yao and G.-J. Ding, CP symmetry and lepton mixing from a scan of finite discrete groups, Phys. Rev. D 94 (2016) 073006 [arXiv:1606.05610] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Lomont, Applications of finite groups, Academic Press, New York, NY, U.S.A. and London, U.K. (1959).zbMATHGoogle Scholar
  57. [57]
    H. Georgi, Lie algebras in particle physics, Front. Phys. 54 (1999) 1 [INSPIRE].Google Scholar
  58. [58]
    W. Grimus and M.N. Rebelo, Automorphisms in gauge theories and the definition of CP and P, Phys. Rept. 281 (1997) 239 [hep-ph/9506272] [INSPIRE].
  59. [59]
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G.C. Branco, R.G. Felipe and F.R. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G.C. Branco, L. Lavoura and M.N. Rebelo, Majorana neutrinos and CP violation in the leptonic sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.F. Nieves and P.B. Pal, Minimal rephasing invariant CP violating parameters with Dirac and Majorana fermions, Phys. Rev. D 36 (1987) 315 [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.F. Nieves and P.B. Pal, Rephasing invariant CP-violating parameters with Majorana neutrinos, Phys. Rev. D 64 (2001) 076005 [hep-ph/0105305] [INSPIRE].
  64. [64]
    JUNO collaboration, Neutrino physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].
  65. [65]
    S.-B. Kim, New results from RENO and prospects with RENO-50, Nucl. Part. Phys. Proc. 265-266 (2015) 93 [arXiv:1412.2199] [INSPIRE].
  66. [66]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05471 [INSPIRE].
  67. [67]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1512.06148 [INSPIRE].
  68. [68]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.05823 [INSPIRE].
  69. [69]
    DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.02984 [INSPIRE].
  70. [70]
    Hyper-Kamiokande Working Group collaboration, Hyper-Kamiokande physics opportunities, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A. 29 July–6 August 2013 [arXiv:1309.0184] [INSPIRE].
  71. [71]
    Hyper-Kamiokande Working Group collaboration, A long baseline neutrino oscillation experiment using J-PARC neutrino beam and Hyper-Kamiokande, arXiv:1412.4673 [INSPIRE].
  72. [72]
    Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande detector in Korea, PTEP 2018 (2018) 063C01 [arXiv:1611.06118] [INSPIRE].
  73. [73]
    S. Geer, Neutrino beams from muon storage rings: characteristics and physics potential, Phys. Rev. D 57 (1998) 6989 [Erratum ibid. D 59 (1999) 039903] [hep-ph/9712290] [INSPIRE].
  74. [74]
    A. De Rujula, M.B. Gavela and P. Hernández, Neutrino oscillation physics with a neutrino factory, Nucl. Phys. B 547 (1999) 21 [hep-ph/9811390] [INSPIRE].
  75. [75]
    ISS Physics Working Group collaboration, Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [INSPIRE].
  76. [76]
    EXO-200 collaboration, Search for neutrinoless double-beta decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].
  77. [77]
    EXO-200 collaboration, Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].
  78. [78]
    KamLAND-Zen collaboration, Limit on neutrinoless ββ decay of 136 Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76 Ge, Phys. Rev. Lett. 110 (2013) 062502 [arXiv:1211.3863] [INSPIRE].
  79. [79]
    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
  80. [80]
    UTfit collaboration, Results of the global data fitting webpage, http://www.utfit.org/UTfit/ResultsSummer2018SM.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Interdisciplinary Center for Theoretical Study and Department of Modern PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations