Advertisement

Measurement of the triple Higgs coupling at a HE-LHC

  • Samuel HomillerEmail author
  • Patrick Meade
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

The currently unmeasured triple Higgs coupling is one of the strong motivations for future physics programs at the LHC and beyond. A sufficiently precise measurement can lead to qualitative changes in our understanding of electroweak symmetry breaking and the cosmological history of the Higgs potential. As such, the quantitative measurement of this coupling is now one of the benchmark measurements for any proposed collider. We study the capability of a potential 27 TeV HE-LHC upgrade in measuring the Higgs trilinear coupling via the di-Higgs production process in the \( b\overline{b}\upgamma \upgamma \) channel. We emphasize that a key background from single Higgs production via gluon fusion has been underestimated and underappreciated in prior studies. We perform a detailed study taking into account two different potential detector scenarios, and validate against HL-LHC projections from ATLAS. We find that the di-Higgs production process can be observed at ≥ 4.5σ, corresponding to a ∼ 40% measurement of the Higgs self-coupling, with 15 ab−1 of data at the HE-LHC.

Keywords

Beyond Standard Model Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    J. Fan and M. Reece, A new look at Higgs constraints on stops, JHEP 06 (2014) 031 [arXiv:1401.7671] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    R. Essig, P. Meade, H. Ramani and Y.-M. Zhong, Higgs-precision constraints on colored naturalness, JHEP 09 (2017) 085 [arXiv:1707.03399] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    ATLAS collaboration, Prospects for measuring Higgs pair production in the channel \( H\left(\to \upgamma \upgamma \right)H\left(\to b\overline{b}\right) \) using the ATLAS detector at the HL-LHC, ATL-PHYS-PUB-2014-019, CERN, Geneva, Switzerland (2014).
  6. [6]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Q.-H. Cao, B. Yan, D.-M. Zhang and H. Zhang, Resolving the degeneracy in single Higgs production with Higgs pair production, Phys. Lett. B 752 (2016) 285 [arXiv:1508.06512] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    ATLAS collaboration, Study of the double Higgs production channel \( H\left(\to b\overline{b}\right)H\left(\to \upgamma \upgamma \right) \) with the ATLAS experiment at the HL-LHC, ATL-PHYS-PUB-2017-001, CERN, Geneva, Switzerland (2017).
  9. [9]
    J.H. Kim, Y. Sakaki and M. Son, Combined analysis of double Higgs production via gluon fusion at the HL-LHC in the effective field theory approach, Phys. Rev. D 98 (2018) 015016 [arXiv:1801.06093] [INSPIRE].ADSGoogle Scholar
  10. [10]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.H. Kim, K. Kong, K.T. Matchev and M. Park, Measuring the triple Higgs self-interaction at the Large Hadron Collider, arXiv:1807.11498 [INSPIRE].
  12. [12]
    D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Meade and H. Ramani, Unrestored electroweak symmetry, Phys. Rev. Lett. 122 (2019) 041802 [arXiv:1807.07578] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    W. Yao, Studies of measuring Higgs self-coupling with \( HH\to b\overline{b}\upgamma \upgamma \) at the future hadron colliders, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A. 29 July–6 August 2013 [arXiv:1308.6302] [INSPIRE].
  16. [16]
    A.J. Barr, M.J. Dolan, C. Englert, D.E. Ferreira de Lima and M. Spannowsky, Higgs self-coupling measurements at a 100 TeV hadron collider, JHEP 02 (2015) 016 [arXiv:1412.7154] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H.-J. He, J. Ren and W. Yao, Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders, Phys. Rev. D 93 (2016) 015003 [arXiv:1506.03302] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  20. [20]
    Q.-H. Cao, G. Li, B. Yan, D.-M. Zhang and H. Zhang, Double Higgs production at the 14 TeV LHC and a 100 TeV pp collider, Phys. Rev. D 96 (2017) 095031 [arXiv:1611.09336] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Banerjee, C. Englert, M.L. Mangano, M. Selvaggi and M. Spannowsky, hh + jet production at 100 TeV, Eur. Phys. J. C 78 (2018) 322 [arXiv:1802.01607] [INSPIRE].
  23. [23]
    J. Chang, K. Cheung, J.S. Lee, C.-T. Lu and J. Park, Higgs-boson-pair production \( H\left(\to b\overline{b}\right)H\left(\to \upgamma \upgamma \right) \) from gluon fusion at the HL-LHC and HL-100 TeV hadron collider, arXiv:1804.07130 [INSPIRE].
  24. [24]
    D.M. Asner et al., ILC Higgs white paper, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A. 29 July–6 August 2013 [arXiv:1310.0763] [INSPIRE].
  25. [25]
    T. Barklow, K. Fujii, S. Jung, M.E. Peskin and J. Tian, Model-independent determination of the triple Higgs coupling at e + e colliders, Phys. Rev. D 97 (2018) 053004 [arXiv:1708.09079] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. McCullough, An indirect model-dependent probe of the Higgs self-coupling, Phys. Rev. D 90 (2014) 015001 [Erratum ibid. D 92 (2015) 039903] [arXiv:1312.3322] [INSPIRE].
  27. [27]
    D. Gonçalves, T. Han, F. Kling, T. Plehn and M. Takeuchi, Higgs boson pair production at future hadron colliders: from kinematics to dynamics, Phys. Rev. D 97 (2018) 113004 [arXiv:1802.04319] [INSPIRE].ADSGoogle Scholar
  28. [28]
    DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  29. [29]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Arganda, C. Garcia-Garcia and M.J. Herrero, Probing the Higgs self-coupling through double Higgs production in vector boson scattering at the LHC, arXiv:1807.09736 [INSPIRE].
  31. [31]
    Q.-H. Cao, Y. Liu and B. Yan, Measuring trilinear Higgs coupling in WHH and ZHH productions at the high-luminosity LHC, Phys. Rev. D 95 (2017) 073006 [arXiv:1511.03311] [INSPIRE].ADSGoogle Scholar
  32. [32]
    O.J.P. Eboli, G.C. Marques, S.F. Novaes and A.A. Natale, Twin Higgs boson production, Phys. Lett. B 197 (1987) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  35. [35]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
  36. [36]
    D. de Florian and J. Mazzitelli, Higgs boson pair production at next-to-next-to-leading order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. de Florian et al., Differential Higgs boson pair production at next-to-next-to-leading order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic accuracy at the LHC, JHEP 09 (2015) 053 [arXiv:1505.07122] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Borowka et al., Higgs boson pair production in gluon fusion at next-to-leading order with full top-quark mass dependence, Phys. Rev. Lett. 117 (2016) 012001 [Erratum ibid. 117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
  41. [41]
    S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    G. Heinrich, S.P. Jones, M. Kerner, G. Luisoni and E. Vryonidou, NLO predictions for Higgs boson pair production with full top quark mass dependence matched to parton showers, JHEP 08 (2017) 088 [arXiv:1703.09252] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  44. [44]
    M. Grazzini et al., Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059 [arXiv:1803.02463] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard Model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP 08 (2014) 030 [arXiv:1404.7139] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    ATLAS collaboration, Projected sensitivity to non-resonant Higgs boson pair production in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at HL-LHC with the ATLAS detector, ATL-PHYS-PUB-2016-024, CERN, Geneva, Switzerland (2016).
  47. [47]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Papaefstathiou, Discovering Higgs boson pair production through rare final states at a 100 TeV collider, Phys. Rev. D 91 (2015) 113016 [arXiv:1504.04621] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Adhikary, S. Banerjee, R.K. Barman, B. Bhattacherjee and S. Niyogi, Revisiting the non-resonant Higgs pair production at the HL-LHC, JHEP 07 (2018) 116 [arXiv:1712.05346] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    ATLAS collaboration, Search for resonant and non-resonant Higgs boson pair production in the \( b\overline{b}{\tau}^{+}{\tau}^{-} \) decay channel in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 191801 [arXiv:1808.00336] [INSPIRE].
  51. [51]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].
  53. [53]
    NNPDF collaboration, Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  54. [54]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  56. [56]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  57. [57]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  58. [58]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev. D 83 (2011) 074013 [arXiv:1102.1967] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Wiesemann, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni and P. Torrielli, Higgs production in association with bottom quarks, JHEP 02 (2015) 132 [arXiv:1409.5301] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    N. Deutschmann, F. Maltoni, M. Wiesemann and M. Zaro, Top-Yukawa contributions to bbH production at the LHC, submitted to JHEP (2018) [arXiv:1808.01660] [INSPIRE].
  63. [63]
    C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].
  66. [66]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  67. [67]
    N. Greiner, S. Höche, G. Luisoni, M. Schönherr, J.-C. Winter and V. Yundin, Phenomenological analysis of Higgs boson production through gluon fusion in association with jets, JHEP 01 (2016) 169 [arXiv:1506.01016] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S.P. Jones, M. Kerner and G. Luisoni, Next-to-leading-order QCD corrections to Higgs boson plus jet production with full top-quark mass dependence, Phys. Rev. Lett. 120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G. Apollinari, HL-LHC and HE-LHC upgrade plans and opportunities for U.S. participation, in APS April Meeting 2017 62, January 2017.Google Scholar
  70. [70]
    ATLAS collaboration, ATLAS phase-II upgrade scoping document, CERN-LHCC-2015-020, CERN, Geneva, Switzerland (2015) [LHCC-G-166].
  71. [71]
    ATLAS collaboration, Expected performance for an upgraded ATLAS detector at High-Luminosity LHC, ATL-PHYS-PUB-2016-026, CERN, Geneva, Switzerland (2016).
  72. [72]
    D. Contardo, M. Klute, J. Mans, L. Silvestris and J. Butler, Technical proposal for the phase-II upgrade of the CMS detector, CERN-LHCC-2015-010, CERN, Geneva, Switzerland (2015).
  73. [73]
    ATLAS collaboration, Expected pileup values at the HL-LHC, ATL-UPGRADE-PUB-2013-014, CERN, Geneva, Switzerland (2013).
  74. [74]
    ATLAS collaboration, Expected performance of the ATLAS inner tracker at the High-Luminosity LHC, ATL-PHYS-PUB-2016-025, CERN, Geneva, Switzerland (2016).
  75. [75]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  76. [76]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  77. [77]
    ATLAS collaboration, Evidence for the \( H\to b\overline{b} \) decay with the ATLAS detector, JHEP 12 (2017)024 [arXiv:1708.03299] [INSPIRE].
  78. [78]
    ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2019) 030 [arXiv:1804.06174] [INSPIRE].
  79. [79]
    CMS collaboration, Combination of searches for Higgs boson pair production in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-030, CERN, Geneva, Switzerland (2018).

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.Department of PhysicsBrookhaven National LaboratoryUptonU.S.A.

Personalised recommendations