Topological data analysis for the string landscape

  • Alex ColeEmail author
  • Gary Shiu
Open Access
Regular Article - Theoretical Physics


Persistent homology computes the multiscale topology of a data set by using a sequence of discrete complexes. In this paper, we propose that persistent homology may be a useful tool for studying the structure of the landscape of string vacua. As a scaled-down version of the program, we use persistent homology to characterize distributions of Type IIB flux vacua on moduli space for three examples: the rigid Calabi-Yau, a hypersurface in weighted projective space, and the symmetric six-torus T6 = (T2)3. These examples suggest that persistence pairing and multiparameter persistence contain useful information for characterization of the landscape in addition to the usual information contained in standard persistent homology. We also study how restricting to special vacua with phenomenologically interesting low-energy properties affects the topology of a distribution.


Superstring Vacua Flux compactifications 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    M.R. Douglas, The Statistics of string/M theory vacua, JHEP 05 (2003) 046 [hep-th/0303194] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    L. Susskind, The Anthropic landscape of string theory, hep-th/0302219 [INSPIRE].
  4. [4]
    S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    T. Banks, M. Dine and E. Gorbatov, Is there a string theory landscape?, JHEP 08 (2004) 058 [hep-th/0309170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072 [hep-th/0404116] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    M.R. Douglas, B. Shiffman and S. Zelditch, Critical points and supersymmetric vacua, Commun. Math. Phys. 252 (2004) 325 [math/0402326] [INSPIRE].
  8. [8]
    F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP 03 (2005) 061 [hep-th/0411183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    L. Susskind, Supersymmetry breaking in the anthropic landscape, hep-th/0405189 [INSPIRE].
  10. [10]
    M.R. Douglas, Statistical analysis of the supersymmetry breaking scale, hep-th/0405279 [INSPIRE].
  11. [11]
    M. Dine, E. Gorbatov and S.D. Thomas, Low energy supersymmetry from the landscape, JHEP 08 (2008) 098 [hep-th/0407043] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J.P. Conlon and F. Quevedo, On the explicit construction and statistics of Calabi-Yau flux vacua, JHEP 10 (2004) 039 [hep-th/0409215] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    F. Marchesano, G. Shiu and L.-T. Wang, Model building and phenomenology of flux-induced supersymmetry breaking on D3-branes, Nucl. Phys. B 712 (2005) 20 [hep-th/0411080] [INSPIRE].
  15. [15]
    M. Dine, D. O’Neil and Z. Sun, Branches of the landscape, JHEP 07 (2005) 014 [hep-th/0501214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    B.S. Acharya, F. Denef and R. Valandro, Statistics of M-theory vacua, JHEP 06 (2005) 056 [hep-th/0502060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    K.R. Dienes, Statistics on the heterotic landscape: Gauge groups and cosmological constants of four-dimensional heterotic strings, Phys. Rev. D 73 (2006) 106010 [hep-th/0602286] [INSPIRE].
  18. [18]
    F. Gmeiner, R. Blumenhagen, G. Honecker, D. Lüst and T. Weigand, One in a billion: MSSM-like D-brane statistics, JHEP 01 (2006) 004 [hep-th/0510170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M.R. Douglas and W. Taylor, The Landscape of intersecting brane models, JHEP 01 (2007) 031 [hep-th/0606109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y.-H. He, The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning, arXiv:1812.02893 [INSPIRE].
  21. [21]
    H. Firouzjahi, S. Sarangi and S.H.H. Tye, Spontaneous creation of inflationary universes and the cosmic landscape, JHEP 09 (2004) 060 [hep-th/0406107] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Kobakhidze and L. Mersini-Houghton, Birth of the universe from the landscape of string theory, Eur. Phys. J. C 49 (2007) 869 [hep-th/0410213] [INSPIRE].
  23. [23]
    H. Davoudiasl, S. Sarangi and G. Shiu, Vacuum sampling in the landscape during inflation, Phys. Rev. Lett. 99 (2007) 161302 [hep-th/0611232] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Sarangi, G. Shiu and B. Shlaer, Rapid Tunneling and Percolation in the Landscape, Int. J. Mod. Phys. A 24 (2009) 741 [arXiv:0708.4375] [INSPIRE].
  25. [25]
    T. Banks, Landskepticism or why effective potentials dont count string models, 2004, hep-th/0412129 [INSPIRE].
  26. [26]
    T. Banks, The Top 10500 Reasons Not to Believe in the Landscape, arXiv:1208.5715 [INSPIRE].
  27. [27]
    W. Taylor and Y.-N. Wang, The F-theory geometry with most flux vacua, JHEP 12 (2015) 164 [arXiv:1511.03209] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  28. [28]
    J. Halverson, C. Long and B. Sung, Algorithmic universality in F-theory compactifications, Phys. Rev. D 96 (2017) 126006 [arXiv:1706.02299] [INSPIRE].
  29. [29]
    S. Abel and J. Rizos, Genetic Algorithms and the Search for Viable String Vacua, JHEP 08 (2014) 010 [arXiv:1404.7359] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y.-H. He, Deep-Learning the Landscape, arXiv:1706.02714 [INSPIRE].
  31. [31]
    D. Krefl and R.-K. Seong, Machine Learning of Calabi-Yau Volumes, Phys. Rev. D 96 (2017) 066014 [arXiv:1706.03346] [INSPIRE].
  32. [32]
    F. Ruehle, Evolving neural networks with genetic algorithms to study the String Landscape, JHEP 08 (2017) 038 [arXiv:1706.07024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    J. Carifio, J. Halverson, D. Krioukov and B.D. Nelson, Machine Learning in the String Landscape, JHEP 09 (2017) 157 [arXiv:1707.00655] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Y.-N. Wang and Z. Zhang, Learning non-Higgsable gauge groups in 4D F-theory, JHEP 08 (2018) 009 [arXiv:1804.07296] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    K. Bull, Y.-H. He, V. Jejjala and C. Mishra, Machine Learning CICY Threefolds, Phys. Lett. B 785 (2018) 65 [arXiv:1806.03121] [INSPIRE].
  36. [36]
    D. Klaewer and L. Schlechter, Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties, Phys. Lett. B 789 (2019) 438 [arXiv:1809.02547] [INSPIRE].
  37. [37]
    A. Constantin, Y.-H. He and A. Lukas, Counting String Theory Standard Models, arXiv:1810.00444 [INSPIRE].
  38. [38]
    A. Mütter, E. Parr and P.K.S. Vaudrevange, Deep learning in the heterotic orbifold landscape, Nucl. Phys. B 940 (2019) 113 [arXiv:1811.05993] [INSPIRE].
  39. [39]
    Edelsbrunner, Letscher and Zomorodian, Topological persistence and simplification, Discrete Comput. Geom. 28 (2002) 511.Google Scholar
  40. [40]
    A. Zomorodian and G. Carlsson, Computing persistent homology, Discrete Comput. Geom. 33 (2005) 249.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    G. Carlsson, Topology and data, Bull. Am. Math. Soc. 46 (2009) 255.Google Scholar
  42. [42]
    G. Carlsson, Topological pattern recognition for point cloud data, Acta Numer. 23 (2014) 289.Google Scholar
  43. [43]
    J.A. Perea, A Brief History of Persistence, arXiv:1809.03624.
  44. [44]
    V. de Silva and R. Ghrist, Coverage in sensor networks via persistent homology, Algebr. Geom. Topol. 7 (2007) 339.Google Scholar
  45. [45]
    G. Carlsson, T. Ishkhanov, V. De Silva and A. Zomorodian, On the local behavior of spaces of natural images, Int. J. Comput. Vision 76 (2008) 1.MathSciNetCrossRefGoogle Scholar
  46. [46]
    M. Nicolau, A.J. Levine and G. Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Proc. Nat. Acad. Sci. 108 (2011) 7265.ADSCrossRefGoogle Scholar
  47. [47]
    J.M. Chan, G. Carlsson and R. Rabadan, Topology of viral evolution, Proc. Nat. Acad. Sci 110 (2013) 18566.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda, A topological measurement of protein compressibility, Japan J. Ind. Appl. Math. 32 (2015) 1.Google Scholar
  49. [49]
    A.E. Sizemore, J. Phillips-Cremins, R. Ghrist and D.S. Bassett, The importance of the whole: topological data analysis for the network neuroscientist, arXiv:1806.05167.
  50. [50]
    T. Sousbie, The persistent cosmic web and its filamentary structure I: Theory and implementation, Mon. Not. Roy. Astron. Soc. 414 (2011) 350 [arXiv:1009.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Sousbie, C. Pichon and H. Kawahara, The persistent cosmic web and its filamentary structureII: Illustrations, Mon. Not. Roy. Astron. Soc. 414 (2011) 384 [arXiv:1009.4014] [INSPIRE].
  52. [52]
    P. Pranav et al., The Topology of the Cosmic Web in Terms of Persistent Betti Numbers, Mon. Not. Roy. Astron. Soc. 465 (2017) 4281 [arXiv:1608.04519] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Cole and G. Shiu, Persistent Homology and Non-Gaussianity, JCAP 03 (2018) 025 [arXiv:1712.08159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    X. Xu, J. Cisewski-Kehe, S.B. Green and D. Nagai, Finding cosmic voids and filament loops using topological data analysis, arXiv:1811.08450 [INSPIRE].
  55. [55]
    W. Elbers and R. van de Weygaert, Persistent topology of the reionisation bubble network. I: Formalism & Phenomenology, arXiv:1812.00462 [INSPIRE].
  56. [56]
    R.C. Keenan, A.J. Barger and L.L. Cowie, Evidence for a 300 Megaparsec Scale Under-density in the Local Galaxy Distribution, Astrophys. J. 775 (2013) 62 [arXiv:1304.2884] [INSPIRE].
  57. [57]
    F. Denef and M.R. Douglas, Computational complexity of the landscape. I., Annals Phys. 322 (2007) 1096 [hep-th/0602072] [INSPIRE].
  58. [58]
    F. Denef, M.R. Douglas, B. Greene and C. Zukowski, Computational complexity of the landscape IICosmological considerations, Annals Phys. 392 (2018) 93 [arXiv:1706.06430] [INSPIRE].
  59. [59]
    N. Bao, R. Bousso, S. Jordan and B. Lackey, Fast optimization algorithms and the cosmological constant, Phys. Rev. D 96 (2017) 103512 [arXiv:1706.08503] [INSPIRE].
  60. [60]
    J. Halverson and F. Ruehle, Computational Complexity of Vacua and Near-Vacua in Field and String Theory, Phys. Rev. D 99 (2019) 046015 [arXiv:1809.08279] [INSPIRE].
  61. [61]
    M. Cirafici, Persistent Homology and String Vacua, JHEP 03 (2016) 045 [arXiv:1512.01170] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    V. De Silva and G.E. Carlsson, Topological estimation using witness complexes, in SPBG04 Symposium on Point-Based Graphics 2004, The Eurographics Association (2004) [].
  63. [63]
    A.J. Zomorodian, Topology for computing, vol. 16, Cambridge University Press (2005).Google Scholar
  64. [64]
    H. Edelsbrunner and J. Harer, Computational topology: an introduction, American Mathematical Soc. (2010).Google Scholar
  65. [65]
    D. Cohen-Steiner, H. Edelsbrunner and J. Harer, Stability of persistence diagrams, in Proceedings of the twenty-first annual symposium on Computational geometry, pp. 263-271, ACM (2005).Google Scholar
  66. [66]
    H. Edelsbrunner, The union of balls and its dual shape, in Proceedings of the Ninth Annual Symposium on Computational Geometry, SCG ’93, New York, NY, U.S.A., pp. 218-231, ACM (1993) [].
  67. [67]
    M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
  70. [70]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Enumerating flux vacua with enhanced symmetries, JHEP 02 (2005) 037 [hep-th/0411061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  71. [71]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  72. [72]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].
  73. [73]
    S. Sethi, C. Vafa and E. Witten, Constraints on low dimensional string compactifications, Nucl. Phys. B 480 (1996) 213 [hep-th/9606122] [INSPIRE].
  74. [74]
    M. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. 1: Introduction, Cambridge Monographs on Mathematical Physics (1987) [INSPIRE].
  75. [75]
    M. Green, J. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology, Cambridge Monographs on Mathematical Physics (1987) [INSPIRE].
  76. [76]
    A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [INSPIRE].
  77. [77]
    A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    A. Giryavets, S. Kachru and P.K. Tripathy, On the taxonomy of flux vacua, JHEP 08 (2004) 002 [hep-th/0404243] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].
  80. [80]
    G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, Discrete Comput. Geom. 42 (2009) 71.MathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    M. Lesnick and M. Wright, Interactive Visualization of 2-D Persistence Modules, arXiv:1512.00180.
  82. [82]
    N. Otter, M.A. Porter, U. Tillmann, P. Grindrod and H.A. Harrington, A roadmap for the computation of persistent homology, arXiv:1506.08903.
  83. [83]
    J. Carifio, W.J. Cunningham, J. Halverson, D. Krioukov, C. Long and B.D. Nelson, Vacuum Selection from Cosmology on Networks of String Geometries, Phys. Rev. Lett. 121 (2018) 101602 [arXiv:1711.06685] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    J. Brown, A. Cole, G. Shiu and W. Cottrell, Gravitational decoupling and the Picard-Lefschetz approach, Phys. Rev. D 97 (2018) 025002 [arXiv:1710.04737] [INSPIRE].
  85. [85]
    C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE].
  86. [86]
    G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, de Sitter Space and the Swampland, arXiv:1806.08362 [INSPIRE].
  87. [87]
    H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].
  88. [88]
    H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].
  89. [89]
    A. Tausz, M. Vejdemo-Johansson and H. Adams, JavaPlex: A research software package for persistent (co)homology, in Proceedings of ICMS 2014, H. Hong and C. Yap eds., Lecture Notes in Computer Science 8592, pp. 129-136 (2014).Google Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WisconsinMadisonU.S.A.

Personalised recommendations