Advertisement

Graded quivers and B-branes at Calabi-Yau singularities

  • Cyril Closset
  • Sebastián FrancoEmail author
  • Jirui Guo
  • Azeem Hasan
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

A graded quiver with superpotential is a quiver whose arrows are assigned degrees c ∈ {0, 1, , m}, for some integer m ≥ 0, with relations generated by a superpotential of degree m − 1. Ordinary quivers (m = 1) often describe the open string sector of D-brane systems; in particular, they capture the physics of D3-branes at local Calabi-Yau (CY) 3-fold singularities in type IIB string theory, in the guise of 4d \( \mathcal{N} \) = 1 supersymmetric quiver gauge theories. It was pointed out recently that graded quivers with m = 2 and m=3 similarly describe systems of D-branes at CY 4-fold and 5-fold singularities, as 2d \( \mathcal{N} \) = (0, 2) and 0d \( \mathcal{N} \) = 1 gauge theories, respectively. In this work, we further explore the correspondence between m-graded quivers with superpotential, Q(m), and CY (m + 2)-fold singularities, Xm+2. For any m, the open string sector of the topological B-model on Xm+2 can be described in terms of a graded quiver. We illustrate this correspondence explicitly with a few infinite families of toric singularities indexed by m ∈ ℕ, for which we derive “toric” graded quivers associated to the geometry, using several complementary perspectives. Many interesting aspects of supersymmetric quiver gauge theories can be formally extended to any m; for instance, for one family of singularities, dubbed C(Y1,0(ℙm)), that generalizes the conifold singularity to m > 1, we point out the existence of a formal “duality cascade” for the corresponding graded quivers.

Keywords

D-branes Supersymmetry and Duality Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  2. [2]
    D.R. Morrison and M.R. Plesser, Nonspherical horizons. 1, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [INSPIRE].
  3. [3]
    C. Beasley, B.R. Greene, C.I. Lazaroiu and M.R. Plesser, D3-branes on partial resolutions of Abelian quotient singularities of Calabi-Yau threefolds, Nucl. Phys. B 566 (2000) 599 [hep-th/9907186] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7 (2003) 1117 [hep-th/0212021] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L p,q|r, JHEP 04 (2006) 033 [hep-th/0505206] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Butti, D. Forcella and A. Zaffaroni, The dual superconformal theory for L p,q,r manifolds, JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Franco and G. Musiker, Higher cluster categories and QFT dualities, Phys. Rev. D 98 (2018) 046021 [arXiv:1711.01270] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C. Closset, J. Guo and E. Sharpe, B-branes and supersymmetric quivers in 2d, JHEP 02 (2018) 051 [arXiv:1711.10195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    C. Closset, D. Ghim and R.-K. Seong, Supersymmetric gauged matrix models from dimensional reduction on a sphere, JHEP 05 (2018) 026 [arXiv:1712.10023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    R. Eager and I. Saberi, Holomorphic field theories and Calabi-Yau algebras, arXiv:1805.02084 [INSPIRE].
  19. [19]
    H. Garcia-Compean and A.M. Uranga, Brane box realization of chiral gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329 [hep-th/9806177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) quiver gauge theories and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models, toric Calabi-Yau 4-folds and 2d (0, 2) quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP 05 (2016) 020 [arXiv:1602.01834] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Franco, S. Lee and R.-K. Seong, Orbifold reduction and 2d (0, 2) gauge theories, JHEP 03 (2017) 016 [arXiv:1609.07144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Quadrality for supersymmetric matrix models, JHEP 07 (2017) 053 [arXiv:1612.06859] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    S. Franco and A. Hasan, 3d printing of 2d N = (0, 2) gauge theories, JHEP 05 (2018) 082 [arXiv:1801.00799] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    N. Seiberg, The power of holomorphy: exact results in 4D SUSY field theories, in PASCOS ′94: proceedings, 4th International Symposium on Particles, Strings and Cosmology, Syracuse, NY, U.S.A., 19–24 May 1994, pg. 357 [hep-th/9408013] [INSPIRE].
  27. [27]
    E.R. Sharpe, D-branes, derived categories and Grothendieck groups, Nucl. Phys. B 561 (1999) 433 [hep-th/9902116] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M.R. Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42 (2001) 2818 [hep-th/0011017] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S.H. Katz and E. Sharpe, D-branes, open string vertex operators and Ext groups, Adv. Theor. Math. Phys. 6 (2003) 979 [hep-th/0208104] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    S.H. Katz, T. Pantev and E. Sharpe, D branes, orbifolds and Ext groups, Nucl. Phys. B 673 (2003) 263 [hep-th/0212218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    T. Bridgeland, A. King and M. Reid, Mukai implies McKay: the McKay correspondence as an equivalence of derived categories, math.AG/9908027.
  32. [32]
    T. Bridgeland, T-structures on some local Calabi-Yau varieties, math.AG/0502050.
  33. [33]
    Y.T. Lam, Calabi-Yau categories and quivers with superpotential, D.Phil. thesis, University of Oxford, Oxford, U.K. (2014).Google Scholar
  34. [34]
    M. Herbst, K. Hori and D. Page, Phases of N = 2 theories in 1 + 1 dimensions with boundary, arXiv:0803.2045 [INSPIRE].
  35. [35]
    M. Herbst, K. Hori and D. Page, B-type D-branes in toric Calabi-Yau varieties, Lect. Notes Phys. 757 (2009) 27 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  36. [36]
    P.S. Aspinwall, D-branes on toric Calabi-Yau varieties, arXiv:0806.2612 [INSPIRE].
  37. [37]
    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane brick models in the mirror, JHEP 02 (2017) 106 [arXiv:1609.01723] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    I. Brunner and A. Karch, Branes at orbifolds versus Hanany Witten in six-dimensions, JHEP 03 (1998) 003 [hep-th/9712143] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Franco and A. Hasan, Graded quivers, generalized dimer models and toric geometry, work in progress.Google Scholar
  40. [40]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    M. Futaki and K. Ueda, Tropical coamoeba and torus-equivariant homological mirror symmetry for the projective space, Commun. Math. Phys. 332 (2014) 53 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    V. Ginzburg, Calabi-Yau algebras, math.AG/0612139.
  43. [43]
    S. Oppermann, Quivers for silting mutation, Adv. Math. 307 (2017) 684.MathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A. Bakke Buan and H. Thomas, Coloured quiver mutation for higher cluster categories, arXiv:0809.0691.
  45. [45]
    S. Ladkani, Finite-dimensional algebras are (m > 2)-Calabi-Yau tilted, arXiv:1603.09709.
  46. [46]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    C.P. Herzog, Exceptional collections and del Pezzo gauge theories, JHEP 04 (2004) 069 [hep-th/0310262] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    P.S. Aspinwall and I.V. Melnikov, D-branes on vanishing del Pezzo surfaces, JHEP 12 (2004) 042 [hep-th/0405134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    A. Hanany, C.P. Herzog and D. Vegh, Brane tilings and exceptional collections, JHEP 07 (2006) 001 [hep-th/0602041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    C.P. Herzog and R.L. Karp, On the geometry of quiver gauge theories (stacking exceptional collections), Adv. Theor. Math. Phys. 13 (2009) 599 [hep-th/0605177] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    M. Herbst, C.-I. Lazaroiu and W. Lerche, Superpotentials, A relations and WDVV equations for open topological strings, JHEP 02 (2005) 071 [hep-th/0402110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    P.S. Aspinwall and S.H. Katz, Computation of superpotentials for D-branes, Commun. Math. Phys. 264 (2006) 227 [hep-th/0412209] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    T.V. Kadeishvili, The algebraic structure in the homology of an A algebra, Sobshch. Akad. Nauk. Gruzin. SSR 108 (1982) 249.MathSciNetzbMATHGoogle Scholar
  55. [55]
    P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in Progress in string theory. Proceedings, Summer School, TASI 2003, Boulder, CO, U.S.A., 2–27 June 2003, World Scientific, Singapore (2004), pg. 1 [hep-th/0403166] [INSPIRE].
  56. [56]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2004) 987 [hep-th/0403038] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    S. Franco and A. Hasan, Generalized 3d printing, m-graded quivers and toric singularities, work in progress.Google Scholar
  59. [59]
    S. Franco, D. Ghim, S. Lee and R.-K. Seong, Elliptic genera of 2d (0, 2) gauge theories from brane brick models, JHEP 06 (2017) 068 [arXiv:1702.02948] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  60. [60]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    D.-E. Diaconescu and M.R. Douglas, D-branes on stringy Calabi-Yau manifolds, hep-th/0006224 [INSPIRE].
  62. [62]
    M.R. Douglas, S. Govindarajan, T. Jayaraman and A. Tomasiello, D branes on Calabi-Yau manifolds and superpotentials, Commun. Math. Phys. 248 (2004) 85 [hep-th/0203173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    C.P. Herzog and I.R. Klebanov, Gravity duals of fractional branes in various dimensions, Phys. Rev. D 63 (2001) 126005 [hep-th/0101020] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    C.P. Herzog, Seiberg duality is an exceptional mutation, JHEP 08 (2004) 064 [hep-th/0405118] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    E. Sharpe, Lectures on D-branes and sheaves, hep-th/0307245 [INSPIRE].
  66. [66]
    C.I. Lazaroiu, On the non-commutative geometry of topological D-branes, JHEP 11 (2005) 032 [hep-th/0507222] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    R. Bott, Homogeneous vector bundles, Ann. Math. 66 (1957) 203.MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. 74 (1961) 329.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Cyril Closset
    • 1
  • Sebastián Franco
    • 2
    • 3
    Email author
  • Jirui Guo
    • 4
  • Azeem Hasan
    • 2
    • 3
  1. 1.Mathematical InstituteUniversity of OxfordOxfordU.K.
  2. 2.Physics DepartmentThe City College of the CUNYNew YorkU.S.A.
  3. 3.The Graduate School and University CenterThe City University of New YorkNew YorkU.S.A.
  4. 4.Department of Physics and Center for Field Theory and Particle PhysicsFudan UniversityShanghaiChina

Personalised recommendations