Advertisement

Supersymmetric Born-Infeld actions and new Fayet-Iliopoulos terms

  • Niccolò CribioriEmail author
  • Fotis Farakos
  • Magnus Tournoy
Open Access
Regular Article - Theoretical Physics
  • 18 Downloads

Abstract

We consider \( \mathcal{N} \) = 1 supersymmetric Born-Infeld actions that have a second non-linear supersymmetry. We focus on the model proposed by Bagger and Galperin and show that the breaking of the second supersymmetry is sourced by the new Fayet-Iliopoulos D-term. Interpreting such an action as the effective theory of a space-filling (anti) D3-brane leads to an expression for the new Fayet-Iliopoulos parameter in terms of the brane tension and α′.

Keywords

Superspaces Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  2. [2]
    P. Fayet and J. Iliopoulos, Spontaneously Broken Supergauge Symmetries and Goldstone Spinors, Phys. Lett. B 51 (1974) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D.Z. Freedman, Supergravity with Axial Gauge Invariance, Phys. Rev. D 15 (1977) 1173 [INSPIRE].ADSGoogle Scholar
  4. [4]
    R. Barbieri, S. Ferrara, D.V. Nanopoulos and K.S. Stelle, Supergravity, R Invariance and Spontaneous Supersymmetry Breaking, Phys. Lett. B 113 (1982) 219 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    G. Villadoro and F. Zwirner, De-Sitter vacua via consistent D-terms, Phys. Rev. Lett. 95 (2005) 231602 [hep-th/0508167] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    K.R. Dienes and B. Thomas, On the Inconsistency of Fayet-Iliopoulos Terms in Supergravity Theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [INSPIRE].ADSGoogle Scholar
  8. [8]
    N. Cribiori, F. Farakos, M. Tournoy and A. van Proeyen, Fayet-Iliopoulos terms in supergravity without gauged R-symmetry, JHEP 04 (2018) 032 [arXiv:1712.08601] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Samuel and J. Wess, A Superfield Formulation of the Nonlinear Realization of Supersymmetry and Its Coupling to Supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R. Kallosh and A. Linde, Inflation and Uplifting with Nilpotent Superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, Linear Versus Non-linear Supersymmetry, in General, JHEP 04 (2016) 065 [arXiv:1603.02653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    I. Bandos, M. Heller, S.M. Kuzenko, L. Martucci and D. Sorokin, The Goldstino brane, the constrained superfields and matter in \( \mathcal{N} \) = 1 supergravity, JHEP 11 (2016) 109 [arXiv:1608.05908] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Y. Aldabergenov and S.V. Ketov, Removing instability of inflation in Polonyi-Starobinsky supergravity by adding FI term, Mod. Phys. Lett. A 91 (2018) 1850032 [arXiv:1711.06789] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, Fayet-Iliopoulos terms in supergravity and D-term inflation, Eur. Phys. J. C 78 (2018) 366 [arXiv:1803.03817] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, The cosmological constant in Supergravity, Eur. Phys. J. C 78 (2018) 718 [arXiv:1805.00852] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y. Aldabergenov, S.V. Ketov and R. Knoops, General couplings of a vector multiplet in N = 1 supergravity with new FI terms, Phys. Lett. B 785 (2018) 284 [arXiv:1806.04290] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    F. Farakos, A. Kehagias and A. Riotto, Liberated \( \mathcal{N} \) = 1 supergravity, JHEP 06 (2018) 011 [arXiv:1805.01877] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I. Antoniadis, Y. Chen and G.K. Leontaris, Inflation from the internal volume in type IIB/F-theory compactification, arXiv:1810.05060 [INSPIRE].
  23. [23]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  24. [24]
    S. Kachru, R. Kallosh, A.D. Linde, J.M. Maldacena, L.P. McAllister and S.P. Trivedi, Towards inflation in string theory, JCAP 10 (2003) 013 [hep-th/0308055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld Lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    J. Bagger and A. Galperin, A New Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an Anti-D3-Brane in KKLT dS Vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{\mathrm{D}3} \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT, JHEP 08 (2016) 132 [arXiv:1605.03961] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R. Kallosh, B. Vercnocke and T. Wrase, String Theory Origin of Constrained Multiplets, JHEP 09 (2016) 063 [arXiv:1606.09245] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    M. Cederwall, A. von Gussich, B.E.W. Nilsson and A. Westerberg, The Dirichlet super three-brane in ten-dimensional type IIB supergravity, Nucl. Phys. B 490 (1997) 163 [hep-th/9610148] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Aganagic, C. Popescu and J.H. Schwarz, D-brane actions with local kappa symmetry, Phys. Lett. B 393 (1997) 311 [hep-th/9610249] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145 [hep-th/9611173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Aganagic, C. Popescu and J.H. Schwarz, Gauge invariant and gauge fixed D-brane actions, Nucl. Phys. B 495 (1997) 99 [hep-th/9612080] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).zbMATHGoogle Scholar
  37. [37]
    D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E.A. Ivanov and A.A. Kapustnikov, General Relationship Between Linear and Nonlinear Realizations of Supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].ADSGoogle Scholar
  39. [39]
    E.A. Ivanov and A.A. Kapustnikov, The nonlinear realization structure of models with spontaneously broken supersymmetry, J. Phys. G 8 (1982) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Klein, Couplings in pseudosupersymmetry, Phys. Rev. D 66 (2002) 055009 [hep-th/0205300] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T.E. Clark, S.T. Love, M. Nitta and T. ter Veldhuis, Gauging nonlinear supersymmetry, Phys. Rev. D 73 (2006) 125006 [hep-th/0512078] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    S. Bellucci, N. Kozyrev, S. Krivonos and A. Sutulin, Space-filling D3-brane within coset approach, JHEP 08 (2015) 094 [arXiv:1505.07386] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    S. Ferrara, M. Porrati and A. Sagnotti, N = 2 Born-Infeld attractors, JHEP 12 (2014) 065 [arXiv:1411.4954] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    N. Cribiori and S. Lanza, On the dynamical origin of parameters in \( \mathcal{N} \) = 2 supersymmetry, Eur. Phys. J. C 79 (2019) 32 [arXiv:1810.11425] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    I.A. Bandos, P. Pasti, A. Pokotilov, D.P. Sorokin and M. Tonin, The Space filling Dirichlet 3-brane in N = 2, D = 4 superspace, Nucl. Phys. Proc. Suppl. 102 (2001) 18 [hep-th/0103152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    S. Samuel and J. Wess, Secret supersymmetry, Nucl. Phys. B 233 (1984) 488 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M. Roček, Linearizing the Volkov-Akulov Model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E.A. Ivanov and B.M. Zupnik, Modified N = 2 supersymmetry and Fayet-Iliopoulos terms, Phys. Atom. Nucl. 62 (1999) 1043 [Yad. Fiz. 62 (1999) 1110] [hep-th/9710236] [INSPIRE].
  50. [50]
    I. Antoniadis, J.P. Derendinger and T. Maillard, Nonlinear N = 2 Supersymmetry, Effective Actions and Moduli Stabilization, Nucl. Phys. B 808 (2009) 53 [arXiv:0804.1738] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S.M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality, Phys. Rev. D 81 (2010) 085036 [arXiv:0911.5190] [INSPIRE].ADSGoogle Scholar
  52. [52]
    S.M. Kuzenko, I.N. McArthur and G. Tartaglino-Mazzucchelli, Goldstino superfields in \( \mathcal{N} \) = 2 supergravity, JHEP 05 (2017) 061 [arXiv:1702.02423] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    S.M. Kuzenko, Taking a vector supermultiplet apart: Alternative Fayet-Iliopoulos-type terms, Phys. Lett. B 781 (2018) 723 [arXiv:1801.04794] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    N. Cribiori, G. Dall’Agata and F. Farakos, From Linear to Non-linear SUSY and Back Again, JHEP 08 (2017) 117 [arXiv:1704.07387] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    H. Abe, Y. Sakamura and Y. Yamada, Matter coupled Dirac-Born-Infeld action in four-dimensional N = 1 conformal supergravity, Phys. Rev. D 92 (2015) 025017 [arXiv:1504.01221] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    H. Abe, Y. Aldabergenov, S. Aoki and S.V. Ketov, Massive vector multiplet with Dirac-Born-Infeld and new Fayet-Iliopoulos terms in supergravity, JHEP 09 (2018) 094 [arXiv:1808.00669] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Nilpotent chiral superfield in N = 2 supergravity and partial rigid supersymmetry breaking, JHEP 03 (2016) 092 [arXiv:1512.01964] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of Nilpotent Supergravity, JHEP 09 (2015) 217 [arXiv:1507.07842] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity, Phys. Rev. D 92 (2015) 085040 [Erratum ibid. D 93 (2016) 069901] [arXiv:1507.08264] [INSPIRE].
  60. [60]
    F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensional \( \mathcal{N} \) = 1 supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    I. Bandos, L. Martucci, D. Sorokin and M. Tonin, Brane induced supersymmetry breaking and de Sitter supergravity, JHEP 02 (2016) 080 [arXiv:1511.03024] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    N. Cribiori, G. Dall’Agata and F. Farakos, Interactions of N Goldstini in Superspace, Phys. Rev. D 94 (2016) 065019 [arXiv:1607.01277] [INSPIRE].ADSMathSciNetGoogle Scholar
  63. [63]
    G. Dall’Agata, E. Dudas and F. Farakos, On the origin of constrained superfields, JHEP 05 (2016) 041 [arXiv:1603.03416] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    Z. Komargodski and N. Seiberg, From Linear SUSY to Constrained Superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsTechnische Universität WienViennaAustria
  2. 2.Institute for Theoretical PhysicsKatholieke UniversiteitLeuvenBelgium

Personalised recommendations