Advertisement

Jet suppression in non-conformal plasma using AdS/CFT

  • S. Heshmatian
  • R. MoradEmail author
Open Access
Regular Article - Theoretical Physics
  • 99 Downloads

Abstract

In this paper, suppression of light quark in strongly coupled non-conformal plasmas is studied by using the AdS/CFT correspondence. According to the duality, the well-known falling string profile in the bulk is considered as a light quark moving through the plasma. The maximum distance traversed by an energetic string before falling through the horizon is interpreted as the thermalization distance of light quark in the hot, and strongly coupled plasma. Our numerical results show that the thermalization distance of light quark increases by increasing the deviation from conformal invariance. The relation between this distance and the energy of quark and the temperature of the plasma is analyzed numerically. Moreover, jet quenching parameter is calculated in this non-conformal background and it is found that the jet quenching parameter is decreased by increasing the non-conformality. Our results are compared with the results of \( \mathcal{N}=4 \) SYM theory and also some available experimental data.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
  2. [2]
    PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].
  3. [3]
    BRAHMS collaboration, Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].
  4. [4]
    B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].
  5. [5]
    G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].
  6. [6]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
  8. [8]
    K.J. Eskola, H. Honkanen, C.A. Salgado and U.A. Wiedemann, The Fragility of high-p T hadron spectra as a hard probe, Nucl. Phys. A 747 (2005) 511 [hep-ph/0406319] [INSPIRE].
  9. [9]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
  12. [12]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  14. [14]
    E. Shuryak, Physics of Strongly coupled quark-gluon Plasma, Prog. Part. Nucl. Phys. 62 (2009) 48 [arXiv:0807.3033] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].
  16. [16]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [INSPIRE].
  18. [18]
    D. Teaney, The Effects of viscosity on spectra, elliptic flow and HBT radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [INSPIRE].
  19. [19]
    STAR collaboration, Elliptic flow in Au + Au collisions at \( \sqrt{s_{N\ N}}=130 \) GeV, Phys. Rev. Lett. 86 (2001) 402 [nucl-ex/0009011] [INSPIRE].
  20. [20]
    PHENIX collaboration, Elliptic flow of identified hadrons in Au + Au collisions at \( \sqrt{s_{N\ N}}=200 \) -GeV, Phys. Rev. Lett. 91 (2003) 182301 [nucl-ex/0305013] [INSPIRE].
  21. [21]
    PHOBOS collaboration, Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au + Au collisions at \( \sqrt{s_{N\ N}}=200 \) -GeV, Phys. Rev. C 72 (2005) 051901 [nucl-ex/0407012] [INSPIRE].
  22. [22]
    ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle production in \( \sqrt{s_{N\ N}}=2.76 \) TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907 [arXiv:1203.3087] [INSPIRE].
  23. [23]
    CMS collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at \( {\sqrt{s}}_{NN}=276 \) TeV, Phys. Rev. C 87 (2013) 014902 [arXiv:1204.1409] [INSPIRE].
  24. [24]
    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].
  25. [25]
    ALICE collaboration, Anisotropic flow of charged particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 116 (2016) 132302 [arXiv:1602.01119] [INSPIRE].
  26. [26]
    ATLAS collaboration, Measurement of long-range pseudorapidity correlations and azimuthal harmonics in \( \sqrt{s_{\mathrm{N}\ \mathrm{N}}}=5.02 \) TeV proton-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 044906 [arXiv:1409.1792] [INSPIRE].
  27. [27]
    CMS collaboration, Evidence for Collective Multiparticle Correlations in p-Pb Collisions, Phys. Rev. Lett. 115 (2015) 012301 [arXiv:1502.05382] [INSPIRE].
  28. [28]
    ALICE collaboration, Multiparticle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 90 (2014) 054901 [arXiv:1406.2474] [INSPIRE].
  29. [29]
    ATLAS collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in \( \sqrt{s}=13 \) and 2.76TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116 (2016) 172301 [arXiv:1509.04776] [INSPIRE].
  30. [30]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].
  32. [32]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal Coherence in a Holographic Model of Asymmetric Collisions, Phys. Rev. Lett. 112 (2014) 221602 [arXiv:1312.2956] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    P.M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP 03 (2016) 146 [arXiv:1601.01583] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    P.M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett. 115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Ryu et al., Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions, Phys. Rev. Lett. 115 (2015) 132301 [arXiv:1502.01675] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Bozek, Collective flow in p-Pb and d-Pd collisions at TeV energies, Phys. Rev. C 85 (2012) 014911 [arXiv:1112.0915] [INSPIRE].
  40. [40]
    B. Schenke and R. Venugopalan, Eccentric protons? Sensitivity of flow to system size and shape in p+p, p+Pb and Pb+Pb collisions, Phys. Rev. Lett. 113 (2014) 102301 [arXiv:1405.3605] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Habich, G.A. Miller, P. Romatschke and W. Xiang, Testing hydrodynamic descriptions of p+p collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 76 (2016) 408 [arXiv:1512.05354] [INSPIRE].
  42. [42]
    S. Jeon and U. Heinz, Introduction to Hydrodynamics, Int. J. Mod. Phys. E 24 (2015) 1530010 [arXiv:1503.03931] [INSPIRE].
  43. [43]
    J. Polchinski and M.J. Strassler, The String dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].
  44. [44]
    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    B. Galow, E. Megias, J. Nian and H.J. Pirner, Phenomenology of AdS/QCD and its gravity dual, Nucl. Phys. B 834 (2010) 330 [arXiv:0911.0627] [INSPIRE].
  48. [48]
    M. Attems et al., Thermodynamics, transport and relaxation in non-conformal theories, JHEP 10 (2016) 155 [arXiv:1603.01254] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    S.S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole, Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [INSPIRE].
  50. [50]
    ALICE collaboration, Elliptic flow of strange and multi-strange particles in Pb-Pb collisions at \( \sqrt{s_{N\ N}}=2.76 \) -TeV measured with ALICE, Acta Phys. Polon. Supp. 6 (2013) 479 [INSPIRE].
  51. [51]
    ATLAS collaboration, Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt{s_{N\ N}}=2.77 \) TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].
  52. [52]
    CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].
  53. [53]
    C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].
  54. [54]
    S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].
  55. [55]
    W.A. Horowitz and Y.V. Kovchegov, Shock Treatment: Heavy Quark Drag in a Novel AdS Geometry, Phys. Lett. B 680 (2009) 56 [arXiv:0904.2536] [INSPIRE].
  56. [56]
    K. Bitaghsir Fadafan, H. Liu, K. Rajagopal and U.A. Wiedemann, Stirring Strongly Coupled Plasma, Eur. Phys. J. C 61 (2009) 553 [arXiv:0809.2869] [INSPIRE].
  57. [57]
    W.A. Horowitz, Fluctuating heavy quark energy loss in a strongly coupled quark-gluon plasma, Phys. Rev. D 91 (2015) 085019 [arXiv:1501.04693] [INSPIRE].
  58. [58]
    P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [INSPIRE].
  59. [59]
    R. Morad and W.A. Horowitz, Strong-coupling Jet Energy Loss from AdS/CFT, JHEP 11 (2014) 017 [arXiv:1409.7545] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Ficnar, J. Noronha and M. Gyulassy, Jet Quenching in Non-Conformal Holography, J. Phys. G 38 (2011) 124176 [arXiv:1106.6303] [INSPIRE].
  61. [61]
    K. Bitaghsir Fadafan and R. Morad, Jets in a strongly coupled anisotropic plasma, Eur. Phys. J. C 78 (2018) 16 [arXiv:1710.06417] [INSPIRE].
  62. [62]
    F. D’Eramo, H. Liu and K. Rajagopal, Transverse Momentum Broadening and the Jet Quenching Parameter, Redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].
  63. [63]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].
  64. [64]
    E. Caceres and A. Guijosa, On Drag Forces and Jet Quenching in Strongly Coupled Plasmas, JHEP 12 (2006) 068 [hep-th/0606134] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Buchel, On jet quenching parameters in strongly coupled non-conformal gauge theories, Phys. Rev. D 74 (2006) 046006 [hep-th/0605178] [INSPIRE].
  66. [66]
    J.F. Vazquez-Poritz, Enhancing the jet quenching parameter from marginal deformations, hep-th/0605296 [INSPIRE].
  67. [67]
    E. Nakano, S. Teraguchi and W.-Y. Wen, Drag force, jet quenching and AdS/QCD, Phys. Rev. D 75 (2007) 085016 [hep-ph/0608274] [INSPIRE].
  68. [68]
    S.D. Avramis and K. Sfetsos, Supergravity and the jet quenching parameter in the presence of R-charge densities, JHEP 01 (2007) 065 [hep-th/0606190] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    Y.-h. Gao, W.-s. Xu and D.-f. Zeng, Jet quenching parameters of Sakai-Sugimoto Model, hep-th/0611217 [INSPIRE].
  70. [70]
    N. Armesto, J.D. Edelstein and J. Mas, Jet quenching at finite ’t Hooft coupling and chemical potential from AdS/CFT, JHEP 09 (2006) 039 [hep-ph/0606245] [INSPIRE].
  71. [71]
    F.-L. Lin and T. Matsuo, Jet Quenching Parameter in Medium with Chemical Potential from AdS/CFT, Phys. Lett. B 641 (2006) 45 [hep-th/0606136] [INSPIRE].
  72. [72]
    J. Sadeghi and S. Heshmatian, Jet Quenching Parameter with Hyperscaling Violation, Eur. Phys. J. C 74 (2014) 3032 [arXiv:1308.5991] [INSPIRE].
  73. [73]
    U. Gursoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved Holographic QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461].ADSCrossRefzbMATHGoogle Scholar
  74. [74]
    R.-G. Cai, S. Chakrabortty, S. He and L. Li, Some aspects of QGP phase in a hQCD model, JHEP 02 (2013) 068 [arXiv:1209.4512] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    L. Wang and S.-Y. Wu, Holographic study of the jet quenching parameter in anisotropic systems, Eur. Phys. J. C 76 (2016) 587 [arXiv:1609.03665] [INSPIRE].
  76. [76]
    O. DeWolfe and C. Rosen, Robustness of Sound Speed and Jet Quenching for Gauge/Gravity Models of Hot QCD, JHEP 07 (2009) 022 [arXiv:0903.1458] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    K. Bitaghsir Fadafan, Charge effect and finite ’t Hooft coupling correction on drag force and Jet Quenching Parameter, Eur. Phys. J. C 68 (2010) 505 [arXiv:0809.1336] [INSPIRE].
  78. [78]
    W.A. Horowitz, Time Dependent q from AdS/CFT, Nucl. Part. Phys. Proc. 289-290 (2017) 129 [INSPIRE].
  79. [79]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].
  80. [80]
    J. Mas and J. Tarrio, Hydrodynamics from the Dp-brane, JHEP 05 (2007) 036 [hep-th/0703093] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P.M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev. D 79 (2009) 025021 [arXiv:0804.3110] [INSPIRE].
  82. [82]
    B.G. Zakharov, Radiative energy loss of high-energy quarks in finite size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
  83. [83]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  84. [84]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].
  85. [85]
    S.-J. Rey, S. Theisen and J.-T. Yee, Wilson-Polyakov loop at finite temperature in large N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B 527 (1998) 171 [hep-th/9803135] [INSPIRE].
  86. [86]
    A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in the large N limit at finite temperature, Phys. Lett. B 434 (1998) 36 [hep-th/9803137] [INSPIRE].
  87. [87]
    J. Sonnenschein, What does the string/gauge correspondence teach us about Wilson loops?, in Supersymmetry in the theories of fields, strings and branes. Proceedings of Advanced School, Santiago de Compostela Spain (1999), pg. 219 [hep-th/0003032] [INSPIRE].
  88. [88]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
  89. [89]
    JET collaboration, Extracting the jet transport coefficient from jet quenching in high-energy heavy-ion collisions, Phys. Rev. C 90 (2014) 014909 [arXiv:1312.5003] [INSPIRE].
  90. [90]
    R. Rougemont, A. Ficnar, S. Finazzo and J. Noronha, Energy loss, equilibration and thermodynamics of a baryon rich strongly coupled quark-gluon plasma, JHEP 04 (2016) 102 [arXiv:1507.06556] [INSPIRE].ADSGoogle Scholar
  91. [91]
    D. Li, J. Liao and M. Huang, Enhancement of jet quenching around phase transition: result from the dynamical holographic model, Phys. Rev. D 89 (2014) 126006 [arXiv:1401.2035] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Department of Engineering Sciences and PhysicsBuein Zahra Technical UniversityBuein ZahraIran
  2. 2.UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate StudiesUniversity of South Africa (UNISA)PretoriaSouth Africa
  3. 3.Nanosciences African Network, Materials Research Department, iThemba LABSNational Research FoundationCapeSouth Africa

Personalised recommendations