Advertisement

(0,4) brane box models

  • Amihay Hanany
  • Tadashi OkazakiEmail author
Open Access
Regular Article - Theoretical Physics
  • 70 Downloads

Abstract

Two-dimensional \( \mathcal{N}=\left(0,\ 4\right) \) supersymmetric quiver gauge theories are realized as D3-brane box configurations (two dimensional intervals) which are bounded by NS5-branes and intersect with D5-branes. The periodic brane configuration is mapped to D1-D5-D5 brane system at orbifold singularity via T-duality. The matter content and interactions are encoded by the \( \mathcal{N}=\left(0,\ 4\right) \) quiver diagrams which are determined by the brane configurations. The Abelian gauge anomaly cancellation indicates the presence of Fermi multiplets at the NS-NS junction. We also discuss the brane construction of \( \mathcal{N}=\left(0,\ 4\right) \) supersymmetric boundary conditions in 3d \( \mathcal{N}=4 \) gauge theories involving two-dimensional boundary degrees of freedom that cancel gauge anomaly.

Keywords

Anomalies in Field and String Theories Brane Dynamics in Gauge Theories Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, σ-models and the ADHM construction of instantons, J. Geom. Phys. 15 (1995) 215 [hep-th/9410052] [INSPIRE].
  2. [2]
    S.J. Gates, Jr. and L. Rana, Manifest (4, 0) supersymmetry, σ-models and the ADHM instanton construction, Phys. Lett. B 345 (1995) 233 [hep-th/9411091] [INSPIRE].
  3. [3]
    A. Galperin and E. Sokatchev, Manifest supersymmetry and the ADHM construction of instantons, Nucl. Phys. B 452 (1995) 431 [hep-th/9412032] [INSPIRE].
  4. [4]
    A. Galperin and E. Sokatchev, Supersymmetric σ-models and the ’t Hooft instantons, Class. Quant. Grav. 13 (1996) 161 [hep-th/9504124] [INSPIRE].
  5. [5]
    N.D. Lambert, Quantizing the (0, 4) supersymmetric ADHM σ-model, Nucl. Phys. B 460 (1996) 221 [hep-th/9508039] [INSPIRE].
  6. [6]
    P. Putrov, J. Song and W. Yan, (0, 4) dualities, JHEP 03 (2016) 185 [arXiv:1505.07110] [INSPIRE].
  7. [7]
    A. Gadde et al., 6d string chains, JHEP 02 (2018) 143 [arXiv:1504.04614] [INSPIRE].
  8. [8]
    J.M. Maldacena, A. Strominger and E. Witten, Black hole entropy in M-theory, JHEP 12 (1997) 002 [hep-th/9711053] [INSPIRE].
  9. [9]
    R. Minasian, G.W. Moore and D. Tsimpis, Calabi-Yau black holes and (0, 4) σ-models, Commun. Math. Phys. 209 (2000) 325 [hep-th/9904217] [INSPIRE].
  10. [10]
    Y. Sugawara, N = (0, 4) quiver SCFT(2) and supergravity on AdS 3 × S 2, JHEP 06 (1999) 035 [hep-th/9903120] [INSPIRE].
  11. [11]
    K. Okuyama, D1-D5 on ALE space, JHEP 12 (2005) 042 [hep-th/0510195] [INSPIRE].
  12. [12]
    P.M. Cowdall and P.K. Townsend, Gauged supergravity vacua from intersecting branes, Phys. Lett. B 429 (1998) 281 [Erratum ibid. B 434 (1998) 458] [hep-th/9801165] [INSPIRE].
  13. [13]
    H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [INSPIRE].
  14. [14]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys. Rev. D 59 (1998) 025001 [hep-th/9809065] [INSPIRE].
  15. [15]
    D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].
  16. [16]
    H.-J. Chung and T. Okazaki, (2, 2) and (0, 4) supersymmetric boundary conditions in 3d \( \mathcal{N}=4 \) theories and type IIB branes, Phys. Rev. D 96 (2017) 086005 [arXiv:1608.05363] [INSPIRE].
  17. [17]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  18. [18]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [INSPIRE].
  19. [19]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, U.S.A. (1992).Google Scholar
  20. [20]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].
  21. [21]
    A. Adams, A. Basu and S. Sethi, (0, 2) duality, Adv. Theor. Math. Phys. 7 (2003) 865 [hep-th/0309226] [INSPIRE].
  22. [22]
    T. Okazaki and S. Yamaguchi, Supersymmetric boundary conditions in three-dimensional N = 2 theories, Phys. Rev. D 87 (2013) 125005 [arXiv:1302.6593] [INSPIRE].
  23. [23]
    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].
  24. [24]
    T. Dimofte, D. Gaiotto and N.M. Paquette, Dual boundary conditions in 3d SCFT’s, JHEP 05 (2018) 060 [arXiv:1712.07654] [INSPIRE].
  25. [25]
    N.P. Warner, Supersymmetry in boundary integrable models, Nucl. Phys. B 450 (1995) 663 [hep-th/9506064] [INSPIRE].
  26. [26]
    C.G. Callan and J.M. Maldacena, Brane death and dynamics from the Born-Infeld action, Nucl. Phys. B 513 (1998) 198 [hep-th/9708147] [INSPIRE].
  27. [27]
    N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D 61 (2000) 106009 [hep-th/9911136] [INSPIRE].
  28. [28]
    A. Hanany and A.M. Uranga, Brane boxes and branes on singularities, JHEP 05 (1998) 013 [hep-th/9805139] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Franco et al., 2d (0, 2) quiver gauge theories and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].
  30. [30]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].
  31. [31]
    T. Banks, N. Seiberg and E. Silverstein, Zero and one-dimensional probes with N = 8 supersymmetry, Phys. Lett. B 401 (1997) 30 [hep-th/9703052] [INSPIRE].
  32. [32]
    C.P. Bachas, M.B. Green and A. Schwimmer, (8, 0) quantum mechanics and symmetry enhancement in type-I superstrings, JHEP 01 (1998) 006 [hep-th/9712086] [INSPIRE].
  33. [33]
    K. Behrndt, I. Brunner and I. Gaida, AdS 3 gravity and conformal field theories, Nucl. Phys. B 546 (1999) 65 [hep-th/9806195] [INSPIRE].
  34. [34]
    D. Kutasov, F. Larsen and R.G. Leigh, String theory in magnetic monopole backgrounds, Nucl. Phys. B 550 (1999) 183 [hep-th/9812027] [INSPIRE].
  35. [35]
    D. Berenstein and R.G. Leigh, String junctions and bound states of intersecting branes, Phys. Rev. D 60 (1999) 026005 [hep-th/9812142] [INSPIRE].
  36. [36]
    I. Bena and P. Kraus, Microstates of the D1-D5-KK system, Phys. Rev. D 72 (2005) 025007 [hep-th/0503053] [INSPIRE].
  37. [37]
    B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D 89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].
  38. [38]
    K. Costello and D. Gaiotto, Vertex operator algebras and 3d \( \mathcal{N}=4 \) gauge theories, arXiv:1804.06460 [INSPIRE].
  39. [39]
    D. Gaiotto and T. Okazaki, 4d-3d-2d index and dualities in bulk-boundary-corner, arXiv:1902.05175 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Theoretical Physics, The Blackett LaboratoryImperial College LondonLondonU.K.
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations