Advertisement

Model-independent constraints on the CKM matrix elements |Vtb|, |Vts| and |Vtd|

  • Barbara Clerbaux
  • Wenxing Fang
  • Andrea Giammanco
  • Reza GoldouzianEmail author
Open Access
Regular Article - Experimental Physics
  • 41 Downloads

Abstract

Single top quark production cross sections at hadron colliders are traditionally used to extract the modulus of the Vtb element of the Cabibbo-Kobayashi-Maskawa matrix under the following assumption: |Vtb| ≫ |Vtd|, |Vts|. For the first time, direct limits on |Vtd| and |Vts| are obtained using experimental data without the assumption of the unitarity of the CKM matrix. Limits on the |Vtd|, |Vts| and |Vtb| are extracted from differential measurements of single top quark cross sections in t-channel as a function of the rapidity and transverse momentum of the top quark and the light jet recoiling against the top quark. We have shown that the pseudorapidity of the forward jet in the single top production is one of the most powerful observables for discriminating between the |Vtd| and |Vtb| events. We perform a global fit of top quark related CKM elements to experimental data from the LHC Runs I and II and Tevatron. Experimental data include inclusive and differential single top cross sections in t-channel, inclusive tW production cross section, and top quark branching ratio to b quark and W boson. We present bounds on |Vtb|, |Vts| and |Vtd| using current data and project the results for future LHC data sets corresponding to luminosities of 300 and 3000 fb−1.

Keywords

Hadron-Hadron scattering (experiments) Top physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Particle Data Group collaboration, Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  3. [3]
    CKMfitter Group collaboration, CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
  4. [4]
  5. [5]
    J. Charles et al., Current status of the Standard Model CKM fit and constraints on ΔF = 2 New Physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Alwall et al., Is V tb ≃ 1?, Eur. Phys. J. C 49 (2007) 791 [hep-ph/0607115] [INSPIRE].
  7. [7]
    G. Cacciapaglia, A. Deandrea, N. Gaur, D. Harada, Y. Okada and L. Panizzi, Interplay of vector-like top partner multiplets in a realistic mixing set-up, JHEP 09 (2015) 012 [arXiv:1502.00370] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    G. Cacciapaglia, A. Deandrea, L. Panizzi, N. Gaur, D. Harada and Y. Okada, Heavy Vector-like Top Partners at the LHC and flavour constraints, JHEP 03 (2012) 070 [arXiv:1108.6329] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    ATLAS collaboration, Exotic Physics Searches, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults.
  10. [10]
    CMS collaboration, Beyond 2 Generations Searches, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G.
  11. [11]
    J. Swain and L. Taylor, First determination of the quark mixing matrix element V tb independent of assumptions of unitarity, Phys. Rev. D 58 (1998) 093006 [hep-ph/9712420] [INSPIRE].
  12. [12]
    D0 collaboration, Simultaneous measurement of the ratio B(tWb)/B(tWq) and the top quark pair production cross section with the D0 detector at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 100 (2008) 192003 [arXiv:0801.1326] [INSPIRE].
  13. [13]
    D0 collaboration, Precision measurement of the ratio B(tWb)/B(tWq) and Extraction of V tb, Phys. Rev. Lett. 107 (2011) 121802 [arXiv:1106.5436] [INSPIRE].
  14. [14]
    CDF collaboration, Measurement of R = ℬ(tWb)/ℬ(tWq) in Top-quark-pair Decays using Lepton+jets Events and the Full CDF Run II Data set, Phys. Rev. D 87 (2013) 111101 [arXiv:1303.6142] [INSPIRE].
  15. [15]
    CDF collaboration, Measurement of B(tWb)/B(tWq) in Top-Quark-Pair Decays Using Dilepton Events and the Full CDF Run II Data Set, Phys. Rev. Lett. 112 (2014) 221801 [arXiv:1404.3392] [INSPIRE].
  16. [16]
    CMS collaboration, Measurement of the ratio ℬ(tWb)/ℬ(tWq) in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 736 (2014) 33 [arXiv:1404.2292] [INSPIRE].
  17. [17]
    H. Lacker et al., Model-independent extraction of |V tq| matrix elements from top-quark measurements at hadron colliders, Eur. Phys. J. C 72 (2012) 2048 [arXiv:1202.4694] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Q.-H. Cao and B. Yan, Determining V tb at electron-positron colliders, Phys. Rev. D 92 (2015) 094018 [arXiv:1507.06204] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.A. Aguilar-Saavedra and A. Onofre, Using Single Top Rapidity to Measure V td , V ts , V tb at Hadron Colliders, Phys. Rev. D 83 (2011) 073003 [arXiv:1002.4718] [INSPIRE].ADSGoogle Scholar
  20. [20]
    E. Alvarez, L. Da Rold, M. Estevez and J.F. Kamenik, Measuring |V td| at the LHC, Phys. Rev. D 97 (2018) 033002 [arXiv:1709.07887] [INSPIRE].ADSGoogle Scholar
  21. [21]
    ATLAS collaboration, Comprehensive measurements of t-channel single top-quark production cross sections at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112006 [arXiv:1406.7844] [INSPIRE].
  22. [22]
    ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C 77 (2017) 531 [arXiv:1702.02859] [INSPIRE].
  23. [23]
    ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 04 (2017) 086 [arXiv:1609.03920] [INSPIRE].
  24. [24]
    CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE].
  25. [25]
    CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |V tb| CKM matrix element in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 090 [arXiv:1403.7366] [INSPIRE].
  26. [26]
    CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett. B 772 (2017) 752 [arXiv:1610.00678] [INSPIRE].
  27. [27]
    CDF collaboration, Updated Measurement of the Single Top Quark Production Cross Section and Vtb in the Missing Transverse Energy Plus Jets Topology in \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 93 (2016) 032011 [arXiv:1410.4909] [INSPIRE].
  28. [28]
    D0 collaboration, Model-independent measurement of t-channel single top quark production in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 705 (2011) 313 [arXiv:1105.2788] [INSPIRE].
  29. [29]
    ATLAS collaboration, Evidence for the associated production of a W boson and a top quark in ATLAS at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 142 [arXiv:1205.5764] [INSPIRE].
  30. [30]
    ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment, JHEP 01 (2016) 064 [arXiv:1510.03752] [INSPIRE].
  31. [31]
    ATLAS collaboration, Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at \( \sqrt{s}=13 \) TeV with ATLAS, JHEP 01 (2018) 063 [arXiv:1612.07231] [INSPIRE].
  32. [32]
    CMS collaboration, Evidence for associated production of a single top quark and W boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 110 (2013) 022003 [arXiv:1209.3489] [INSPIRE].
  33. [33]
    CMS collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 112 (2014) 231802 [arXiv:1401.2942] [INSPIRE].
  34. [34]
    ATLAS collaboration, Direct top-quark decay width measurement in the \( t\overline{t} \) lepton+jets channel at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, Eur. Phys. J. C 78 (2018) 129 [arXiv:1709.04207] [INSPIRE].
  35. [35]
    CDF collaboration, Direct Measurement of the Total Decay Width of the Top Quark, Phys. Rev. Lett. 111 (2013) 202001 [arXiv:1308.4050] [INSPIRE].
  36. [36]
    CDF collaboration, Direct Top-Quark Width Measurement CDF, Phys. Rev. Lett. 105 (2010) 232003 [arXiv:1008.3891] [INSPIRE].
  37. [37]
    E.L. Berger, J. Gao and H.X. Zhu, Differential Distributions for t-channel Single Top-Quark Production and Decay at Next-to-Next-to-Leading Order in QCD, JHEP 11 (2017) 158 [arXiv:1708.09405] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Gao and A.S. Papanastasiou, Top-quark pair-production and decay at high precision, Phys. Rev. D 96 (2017) 051501 [arXiv:1705.08903] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E.L. Berger, J. Gao, C.P. Yuan and H.X. Zhu, NNLO QCD Corrections to t-channel Single Top-Quark Production and Decay, Phys. Rev. D 94 (2016) 071501 [arXiv:1606.08463] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Brucherseifer, F. Caola and K. Melnikov, On the NNLO QCD corrections to single-top production at the LHC, Phys. Lett. B 736 (2014) 58 [arXiv:1404.7116] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    N. Kidonakis, Theoretical results for electroweak-boson and single-top production, PoS(DIS2015)170 (2015) [arXiv:1506.04072] [INSPIRE].
  43. [43]
    NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  44. [44]
    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  45. [45]
    ATLAS collaboration, Measurement of differential cross-sections of a single top quark produced in association with a W boson at \( \sqrt{s}=13 \) TeV with ATLAS, Eur. Phys. J. C 78 (2018) 186 [arXiv:1712.01602] [INSPIRE].
  46. [46]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-Leading-Order Predictions for t-Channel Single-Top Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [arXiv:1512.00815] [INSPIRE].
  48. [48]
    A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].ADSGoogle Scholar
  49. [49]
    ATLAS collaboration, Letter of Intent for the Phase-II Upgrade of the ATLAS Experiment, CERN-LHCC-2012-022.
  50. [50]
    CMS collaboration, Technical Proposal for the Phase-II Upgrade of the CMS Detector, CERN-LHCC-2015-010.
  51. [51]
    CMS collaboration, Projected performance of Higgs analyses at the HL-LHC for ECFA 2016, CMS-PAS-FTR-16-002.
  52. [52]
    CMS collaboration, Projections for Top FCNC Searches in 3000/fb at the LHC, CMS-PAS-FTR-13-016.

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Barbara Clerbaux
    • 1
  • Wenxing Fang
    • 1
    • 2
  • Andrea Giammanco
    • 3
  • Reza Goldouzian
    • 1
    Email author
  1. 1.Interuniversity Institute for High Energies (IIHE), Physique des particules élémentaires, Université Libre de Bruxelles, ULBBrusselsBelgium
  2. 2.School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  3. 3.Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations