Advertisement

Self-interacting dark matter with a vector mediator: kinetic mixing with the \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \) gauge boson

  • Ayuki Kamada
  • Masaki YamadaEmail author
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics
  • 58 Downloads

Abstract

A spontaneously broken hidden U(1)h gauge symmetry can explain both the dark matter stability and the observed relic abundance. In this framework, the light gauge boson can mediate the strong dark matter self-interaction, which addresses astrophysical observations that are hard to explain in collisionless cold dark matter. Motivated by flavoured grand unified theories, we introduce right-handed neutrinos and a flavoured BL gauge symmetry for the third family \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \). The unwanted relic of the U(1)h gauge boson decays into neutrinos via the kinetic mixing with the \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \) gauge boson. Indirect detection bounds on dark matter are systematically weakened, since dark matter annihilation results in neutrinos. However, the kinetic mixing between \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \) and U(1)Y gauge bosons are induced by quantum corrections and leads to an observable signal in direct and indirect detection experiments of dark matter. This model can also explain the baryon asymmetry of the Universe via the thermal leptogenesis. In addition, we discuss the possibility of explaining the lepton flavour universality violation in semi-leptonic B meson decays that is recently found in the LHCb experiment.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Tulin and H.-B. Yu, Dark matter self-interactions and small scale structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J.S. Bullock and M. Boylan-Kolchin, Small-scale challenges to the ΛCDM paradigm, Ann. Rev. Astron. Astrophys. 55 (2017) 343 [arXiv:1707.04256] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Kamada, M. Kaplinghat, A.B. Pace and H.-B. Yu, Self-interacting dark matter can explain diverse galactic rotation curves, Phys. Rev. Lett. 119 (2017) 111102 [arXiv:1611.02716] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Creasey, O. Sameie, L.V. Sales, H.-B. Yu, M. Vogelsberger and J. Zavala, Spreading out and staying sharp — creating diverse rotation curves via baryonic and self-interaction effects, Mon. Not. Roy. Astron. Soc. 468 (2017) 2283 [arXiv:1612.03903] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Ren, A. Kwa, M. Kaplinghat and H.-B. Yu, Reconciling the diversity and uniformity of galactic rotation curves with self-interacting dark matter, arXiv:1808.05695 [INSPIRE].
  7. [7]
    K.A. Oman et al., The unexpected diversity of dwarf galaxy rotation curves, Mon. Not. Roy. Astron. Soc. 452 (2015) 3650 [arXiv:1504.01437] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.B. Newman, T. Treu, R.S. Ellis and D.J. Sand, The density profiles of massive, relaxed galaxy clusters. II. Separating luminous and dark matter in cluster cores, Astrophys. J. 765 (2013) 25 [arXiv:1209.1392] [INSPIRE].
  9. [9]
    T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Strong constraints on self-interacting dark matter with light mediators, Phys. Rev. Lett. 118 (2017) 141802 [arXiv:1612.00845] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2 in a gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \) model, JHEP 06 (2018) 117 [arXiv:1805.00651] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden charged dark matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Tulin, H.-B. Yu and K.M. Zurek, Resonant dark forces and small-scale structure, Phys. Rev. Lett. 110 (2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Dasgupta and J. Kopp, Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure, Phys. Rev. Lett. 112 (2014) 031803 [arXiv:1310.6337] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Bringmann, J. Hasenkamp and J. Kersten, Tight bonds between sterile neutrinos and dark matter, JCAP 07 (2014) 042 [arXiv:1312.4947] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P. Ko and Y. Tang, νΛMDM: a model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP2, Phys. Lett. B 739 (2014) 62 [arXiv:1404.0236] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    J.F. Cherry, A. Friedland and I.M. Shoemaker, Neutrino portal dark matter: from dwarf galaxies to IceCube, arXiv:1411.1071 [INSPIRE].
  17. [17]
    T. Kitahara and Y. Yamamoto, Protophobic light vector boson as a mediator to the dark sector, Phys. Rev. D 95 (2017) 015008 [arXiv:1609.01605] [INSPIRE].ADSGoogle Scholar
  18. [18]
    E. Ma, Inception of self-interacting dark matter with dark charge conjugation symmetry, Phys. Lett. B 772 (2017) 442 [arXiv:1704.04666] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    O. Balducci, S. Hofmann and A. Kassiteridis, Flavor structures in the dark Standard Model TeV-paradigm, arXiv:1810.07198 [INSPIRE].
  20. [20]
    R. Alonso, P. Cox, C. Han and T.T. Yanagida, Flavoured B-L local symmetry and anomalous rare B decays, Phys. Lett. B 774 (2017) 643 [arXiv:1705.03858] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.S. Babu, S.M. Barr and I. Gogoladze, Family unification with SO(10), Phys. Lett. B 661 (2008) 124 [arXiv:0709.3491] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  23. [23]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  24. [24]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  25. [25]
    S.L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687 [INSPIRE].Google Scholar
  26. [26]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter-antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [Erratum ibid. B 793 (2008) 362] [hep-ph/0205349] [INSPIRE].
  28. [28]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].
  29. [29]
    W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
  30. [30]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Cox, C. Han and T.T. Yanagida, Right-handed neutrino dark matter in a U(1) extension of the Standard Model, JCAP 01 (2018) 029 [arXiv:1710.01585] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  33. [33]
    LHCb collaboration, Test of lepton universality with B 0K *0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  34. [34]
    L. Bian, S.-M. Choi, Y.-J. Kang and H.M. Lee, Minimal flavored U(1)′ for B-meson anomalies, Phys. Rev. D 96 (2017) 075038 [arXiv:1707.04811] [INSPIRE].ADSGoogle Scholar
  35. [35]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Leptogenesis constraints on B-L breaking Higgs boson in TeV scale seesaw models, JHEP 03 (2018) 122 [arXiv:1711.07634] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G.H. Duan, X. Fan, M. Frank, C. Han and J.M. Yang, A minimal U(1)′ extension of MSSM in light of the B decay anomaly, Phys. Lett. B 789 (2019) 54 [arXiv:1808.04116] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Duerr, K. Schmidt-Hoberg and S. Wild, Self-interacting dark matter with a stable vector mediator, JCAP 09 (2018) 033 [arXiv:1804.10385] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T. Binder, M. Gustafsson, A. Kamada, S.M.R. Sandner and M. Wiesner, Reannihilation of self-interacting dark matter, Phys. Rev. D 97 (2018) 123004 [arXiv:1712.01246] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Kahlhoefer, K. Schmidt-Hoberg, M.T. Frandsen and S. Sarkar, Colliding clusters and dark matter self-interactions, Mon. Not. Roy. Astron. Soc. 437 (2014) 2865 [arXiv:1308.3419] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP 08 (2017) 003 [arXiv:1704.02149] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses, Phys. Rev. Lett. 104 (2010) 151301 [arXiv:0911.0422] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.A. Khrapak, A.V. Ivlev, G.E. Morfill and S.K. Zhdanov, Scattering in the attractive Yukawa potential in the limit of strong interaction, Phys. Rev. Lett. 90 (2003) 225002 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger and C. Pfrommer, ETHOS — an effective theory of structure formation: from dark particle physics to the matter distribution of the universe, Phys. Rev. D 93 (2016) 123527 [arXiv:1512.05344] [INSPIRE].ADSMathSciNetGoogle Scholar
  45. [45]
    A. Kamada and H.-B. Yu, Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube, Phys. Rev. D 92 (2015) 113004 [arXiv:1504.00711] [INSPIRE].ADSGoogle Scholar
  46. [46]
    V. Poulin, J. Lesgourgues and P.D. Serpico, Cosmological constraints on exotic injection of electromagnetic energy, JCAP 03 (2017) 043 [arXiv:1610.10051] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part II: electromagnetic decays, JCAP 11 (2018) 032 [arXiv:1808.09324] [INSPIRE].
  48. [48]
    A.L. Fitzpatrick, D. Hooper and K.M. Zurek, Implications of CoGeNT and DAMA for light WIMP dark matter, Phys. Rev. D 81 (2010) 115005 [arXiv:1003.0014] [INSPIRE].ADSGoogle Scholar
  49. [49]
    XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
  50. [50]
    XENON collaboration, Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  51. [51]
    DarkSide collaboration, DarkSide-20k: a 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS, Eur. Phys. J. Plus 133 (2018) 131 [arXiv:1707.08145] [INSPIRE].
  52. [52]
    LUX-ZEPLIN (LZ) collaboration, LUX-ZEPLIN (LZ) technical design report, arXiv:1703.09144 [INSPIRE].
  53. [53]
    DARWIN collaboration, DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  54. [54]
    Super-Kamiokande collaboration, Searching for dark matter annihilation into neutrinos with Super-Kamiokande, in Proceedings, Meeting of the APS Division of Particles and Fields (DPF 2015), Ann Arbor, MI, U.S.A., 4–8 August 2015 [arXiv:1510.07999] [INSPIRE].
  55. [55]
    R.K. Leane, T.R. Slatyer, J.F. Beacom and K.C.Y. Ng, GeV-scale thermal WIMPs: not even slightly ruled out, Phys. Rev. D 98 (2018) 023016 [arXiv:1805.10305] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].ADSGoogle Scholar
  57. [57]
    BaBar collaboration, Test of lepton universality in ϒ(1S) decays at BaBar, Phys. Rev. Lett. 104 (2010) 191801 [arXiv:1002.4358] [INSPIRE].
  58. [58]
    ATLAS collaboration, Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 01 (2018) 055 [arXiv:1709.07242] [INSPIRE].
  59. [59]
    CMS collaboration, Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 01 (2018) 097 [arXiv:1710.00159] [INSPIRE].
  60. [60]
    ATLAS collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 316 [arXiv:1801.08769] [INSPIRE].
  61. [61]
    Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
  62. [62]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting hints for lepton flavor universality violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar
  63. [63]
    G. D’Amico et al., Flavour anomalies after the \( {R}_{K^{*}} \) measurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of new physics in bsℓ + transitions in the light of recent data, JHEP 01 (2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    G. Hiller and I. Nišandžić, R K and \( {R}_{K^{*}} \) beyond the Standard Model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Ciuchini et al., On flavourful easter eggs for new physics hunger and lepton flavour universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A.K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar and D. London, New physics in b + μ after the measurement of \( {R}_{K^{*}} \), Phys. Rev. D 96 (2017) 095009 [arXiv:1704.07397] [INSPIRE].Google Scholar
  69. [69]
    CMS and LHCb collaborations, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  70. [70]
    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    Belle collaboration, Search for \( B\to {h}^{\left(\ast \right)}\nu \overline{\nu} \) with the full Belle ϒ(4S) data sample, Phys. Rev. D 87 (2013) 111103 [arXiv:1303.3719] [INSPIRE].
  72. [72]
    BaBar collaboration, Search for \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
  73. [73]
    M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini, Next-to-leading order QCD corrections to ΔF = 2 effective Hamiltonians, Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].
  74. [74]
    A.J. Buras, M. Misiak and J. Urban, Two-loop QCD anomalous dimensions of flavor-changing four-quark operators within and beyond the Standard Model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].
  75. [75]
    T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \( KL\to \mu \overline{\mu},\kern0.5em {K}^{+}\to {\pi}^{+}\nu \nu \kern0.5em and\kern0.5em {K}^0\leftrightarrow {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
  76. [76]
    A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ-parameter and \( {B}^0\hbox{--} {\overline{B}}^0 \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Lenz et al., Anatomy of new physics in \( B-\overline{B} \) mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].ADSGoogle Scholar
  78. [78]
    UTfit collaboration, Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
  79. [79]
    ETM collaboration, Leptonic decay constants f K , f D , and \( {f}_{D_s} \) with N f = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 91 (2015) 054507 [arXiv:1411.7908] [INSPIRE].
  80. [80]
    ETM collaboration, ΔS = 2 and ΔC = 2 bag parameters in the Standard Model and beyond from N f = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 92 (2015) 034516 [arXiv:1505.06639] [INSPIRE].
  81. [81]
    E. Golowich, J. Hewett, S. Pakvasa and A.A. Petrov, Implications of \( {D}^0\hbox{--} {\overline{D}}^0 \) mixing for new physics, Phys. Rev. D 76 (2007) 095009 [arXiv:0705.3650] [INSPIRE].ADSGoogle Scholar
  82. [82]
    HFLAV collaboration, Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
  83. [83]
    Belle collaboration, Search for lepton flavor violating τ decays into three leptons with 719 million produced τ + τ pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].
  84. [84]
    ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
  85. [85]
    ATLAS collaboration, Search for lepton-flavor violation in different-flavor, high-mass final states in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 092008 [arXiv:1807.06573] [INSPIRE].
  86. [86]
    ATLAS collaboration, Measurements of four-lepton production at the Z resonance in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with ATLAS, Phys. Rev. Lett. 112 (2014) 231806 [arXiv:1403.5657] [INSPIRE].
  87. [87]
    C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_{B_3-3{L}_{\mu }} \) gauge symmetry as a simple description of bs anomalies, Phys. Rev. D 98 (2018) 095002 [arXiv:1705.00915] [INSPIRE].ADSGoogle Scholar
  88. [88]
    I. Hoenig, G. Samach and D. Tucker-Smith, Searching for dilepton resonances below the Z mass at the LHC, Phys. Rev. D 90 (2014) 075016 [arXiv:1408.1075] [INSPIRE].ADSGoogle Scholar
  89. [89]
    CEPC Study Group collaboration, CEPC conceptual design report: volume 1 — accelerator, arXiv:1809.00285 [INSPIRE].
  90. [90]
    ILC collaboration, The International Linear Collider technical design report — volume 2: physics, arXiv:1306.6352 [INSPIRE].
  91. [91]
    LCC Physics Working Group collaboration, Physics case for the 250 GeV stage of the International Linear Collider, arXiv:1710.07621 [INSPIRE].
  92. [92]
    TLEP Design Study Working Group collaboration, First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].
  93. [93]
    M. He, X.-G. He, C.-K. Huang and G. Li, Search for a heavy dark photon at future e + e colliders, JHEP 03 (2018) 139 [arXiv:1712.09095] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Cassel, D.M. Ghilencea and G.G. Ross, Electroweak and dark matter constraints on a Zin models with a hidden valley, Nucl. Phys. B 827 (2010) 256 [arXiv:0903.1118] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  95. [95]
    A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  96. [96]
    K. Yamamoto, The phase transition associated with intermediate gauge symmetry breaking in superstring models, Phys. Lett. B 168 (1986) 341 [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53 (1996) 1784 [hep-ph/9510204] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Ayuki Kamada
    • 1
  • Masaki Yamada
    • 2
    Email author
  • Tsutomu T. Yanagida
    • 3
    • 4
  1. 1.Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonKorea
  2. 2.Institute of Cosmology, Department of Physics and AstronomyTufts UniversityMedfordU.S.A.
  3. 3.Kavli IPMU (WPI), UTIASThe University of TokyoKashiwaJapan
  4. 4.T.D. Lee Institute and School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations