# Self-interacting dark matter with a vector mediator: kinetic mixing with the \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \) gauge boson

- 58 Downloads

## Abstract

A spontaneously broken hidden U(1)_{h} gauge symmetry can explain both the dark matter stability and the observed relic abundance. In this framework, the light gauge boson can mediate the strong dark matter self-interaction, which addresses astrophysical observations that are hard to explain in collisionless cold dark matter. Motivated by flavoured grand unified theories, we introduce right-handed neutrinos and a flavoured *B* − *L* gauge symmetry for the third family \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \). The unwanted relic of the U(1)_{h} gauge boson decays into neutrinos via the kinetic mixing with the \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \) gauge boson. Indirect detection bounds on dark matter are systematically weakened, since dark matter annihilation results in neutrinos. However, the kinetic mixing between \( \mathrm{U}{(1)}_{{\left(B-L\right)}_3} \) and U(1)_{Y} gauge bosons are induced by quantum corrections and leads to an observable signal in direct and indirect detection experiments of dark matter. This model can also explain the baryon asymmetry of the Universe via the thermal leptogenesis. In addition, we discuss the possibility of explaining the lepton flavour universality violation in semi-leptonic *B* meson decays that is recently found in the LHCb experiment.

## Keywords

Cosmology of Theories beyond the SM Beyond Standard Model## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]S. Tulin and H.-B. Yu,
*Dark matter self-interactions and small scale structure*,*Phys. Rept.***730**(2018) 1 [arXiv:1705.02358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [2]J.S. Bullock and M. Boylan-Kolchin,
*Small-scale challenges to the*Λ*CDM paradigm*,*Ann. Rev. Astron. Astrophys.***55**(2017) 343 [arXiv:1707.04256] [INSPIRE].ADSCrossRefGoogle Scholar - [3]M. Kaplinghat, S. Tulin and H.-B. Yu,
*Dark matter halos as particle colliders: unified solution to small-scale structure puzzles from dwarfs to clusters*,*Phys. Rev. Lett.***116**(2016) 041302 [arXiv:1508.03339] [INSPIRE].ADSCrossRefGoogle Scholar - [4]A. Kamada, M. Kaplinghat, A.B. Pace and H.-B. Yu,
*Self-interacting dark matter can explain diverse galactic rotation curves*,*Phys. Rev. Lett.***119**(2017) 111102 [arXiv:1611.02716] [INSPIRE].ADSCrossRefGoogle Scholar - [5]P. Creasey, O. Sameie, L.V. Sales, H.-B. Yu, M. Vogelsberger and J. Zavala,
*Spreading out and staying sharp — creating diverse rotation curves via baryonic and self-interaction effects*,*Mon. Not. Roy. Astron. Soc.***468**(2017) 2283 [arXiv:1612.03903] [INSPIRE].ADSCrossRefGoogle Scholar - [6]T. Ren, A. Kwa, M. Kaplinghat and H.-B. Yu,
*Reconciling the diversity and uniformity of galactic rotation curves with self-interacting dark matter*, arXiv:1808.05695 [INSPIRE]. - [7]K.A. Oman et al.,
*The unexpected diversity of dwarf galaxy rotation curves*,*Mon. Not. Roy. Astron. Soc.***452**(2015) 3650 [arXiv:1504.01437] [INSPIRE].ADSCrossRefGoogle Scholar - [8]A.B. Newman, T. Treu, R.S. Ellis and D.J. Sand,
*The density profiles of massive, relaxed galaxy clusters. II. Separating luminous and dark matter in cluster cores*,*Astrophys. J.***765**(2013) 25 [arXiv:1209.1392] [INSPIRE]. - [9]T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia,
*Strong constraints on self-interacting dark matter with light mediators*,*Phys. Rev. Lett.***118**(2017) 141802 [arXiv:1612.00845] [INSPIRE].ADSCrossRefGoogle Scholar - [10]A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu,
*Self-interacting dark matter and muon g*− 2*in a gauged*\( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \)*model*,*JHEP***06**(2018) 117 [arXiv:1805.00651] [INSPIRE].ADSCrossRefGoogle Scholar - [11]J.L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu,
*Hidden charged dark matter*,*JCAP***07**(2009) 004 [arXiv:0905.3039] [INSPIRE].ADSCrossRefGoogle Scholar - [12]S. Tulin, H.-B. Yu and K.M. Zurek,
*Resonant dark forces and small-scale structure*,*Phys. Rev. Lett.***110**(2013) 111301 [arXiv:1210.0900] [INSPIRE].ADSCrossRefGoogle Scholar - [13]B. Dasgupta and J. Kopp,
*Cosmologically safe eV-scale sterile neutrinos and improved dark matter structure*,*Phys. Rev. Lett.***112**(2014) 031803 [arXiv:1310.6337] [INSPIRE].ADSCrossRefGoogle Scholar - [14]T. Bringmann, J. Hasenkamp and J. Kersten,
*Tight bonds between sterile neutrinos and dark matter*,*JCAP***07**(2014) 042 [arXiv:1312.4947] [INSPIRE].ADSCrossRefGoogle Scholar - [15]P. Ko and Y. Tang,
*ν*Λ*MDM: a model for sterile neutrino and dark matter reconciles cosmological and neutrino oscillation data after BICEP*2,*Phys. Lett.***B 739**(2014) 62 [arXiv:1404.0236] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [16]J.F. Cherry, A. Friedland and I.M. Shoemaker,
*Neutrino portal dark matter: from dwarf galaxies to IceCube*, arXiv:1411.1071 [INSPIRE]. - [17]T. Kitahara and Y. Yamamoto,
*Protophobic light vector boson as a mediator to the dark sector*,*Phys. Rev.***D 95**(2017) 015008 [arXiv:1609.01605] [INSPIRE].ADSGoogle Scholar - [18]E. Ma,
*Inception of self-interacting dark matter with dark charge conjugation symmetry*,*Phys. Lett.***B 772**(2017) 442 [arXiv:1704.04666] [INSPIRE].ADSCrossRefGoogle Scholar - [19]O. Balducci, S. Hofmann and A. Kassiteridis,
*Flavor structures in the dark Standard Model TeV-paradigm*, arXiv:1810.07198 [INSPIRE]. - [20]R. Alonso, P. Cox, C. Han and T.T. Yanagida,
*Flavoured B-L local symmetry and anomalous rare B decays*,*Phys. Lett.***B 774**(2017) 643 [arXiv:1705.03858] [INSPIRE].ADSCrossRefGoogle Scholar - [21]K.S. Babu, S.M. Barr and I. Gogoladze,
*Family unification with*SO(10),*Phys. Lett.***B 661**(2008) 124 [arXiv:0709.3491] [INSPIRE].ADSCrossRefGoogle Scholar - [22]P. Minkowski,
*μ*→*eγ at a rate of one out of*10^{9}*muon decays?*,*Phys. Lett.***B 67**(1977) 421 [INSPIRE]. - [23]T. Yanagida,
*Horizontal gauge symmetry and masses of neutrinos*,*Conf. Proc.***C 7902131**(1979) 95 [INSPIRE].Google Scholar - [24]M. Gell-Mann, P. Ramond and R. Slansky,
*Complex spinors and unified theories*,*Conf. Proc.***C 790927**(1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar - [25]S.L. Glashow,
*The future of elementary particle physics*,*NATO Sci. Ser.***B 61**(1980) 687 [INSPIRE].Google Scholar - [26]M. Fukugita and T. Yanagida,
*Baryogenesis without grand unification*,*Phys. Lett.***B 174**(1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar - [27]W. Buchmüller, P. Di Bari and M. Plümacher,
*Cosmic microwave background, matter-antimatter asymmetry and neutrino masses*,*Nucl. Phys.***B 643**(2002) 367 [*Erratum ibid.***B 793**(2008) 362] [hep-ph/0205349] [INSPIRE]. - [28]G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia,
*Towards a complete theory of thermal leptogenesis in the SM and MSSM*,*Nucl. Phys.***B 685**(2004) 89 [hep-ph/0310123] [INSPIRE]. - [29]W. Buchmüller, R.D. Peccei and T. Yanagida,
*Leptogenesis as the origin of matter*,*Ann. Rev. Nucl. Part. Sci.***55**(2005) 311 [hep-ph/0502169] [INSPIRE]. - [30]S. Davidson, E. Nardi and Y. Nir,
*Leptogenesis*,*Phys. Rept.***466**(2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar - [31]P. Cox, C. Han and T.T. Yanagida,
*Right-handed neutrino dark matter in a*U(1)*extension of the Standard Model*,*JCAP***01**(2018) 029 [arXiv:1710.01585] [INSPIRE].ADSCrossRefGoogle Scholar - [32]LHCb collaboration,
*Test of lepton universality using B*^{+}→*K*^{+}*ℓ*^{+}*ℓ*^{−}*decays*,*Phys. Rev. Lett.***113**(2014) 151601 [arXiv:1406.6482] [INSPIRE]. - [33]LHCb collaboration,
*Test of lepton universality with B*^{0}→*K*^{*0}*ℓ*^{+}*ℓ*^{−}*decays*,*JHEP***08**(2017) 055 [arXiv:1705.05802] [INSPIRE]. - [34]L. Bian, S.-M. Choi, Y.-J. Kang and H.M. Lee,
*Minimal flavored*U(1)′*for B-meson anomalies*,*Phys. Rev.***D 96**(2017) 075038 [arXiv:1707.04811] [INSPIRE].ADSGoogle Scholar - [35]P.S.B. Dev, R.N. Mohapatra and Y. Zhang,
*Leptogenesis constraints on B-L breaking Higgs boson in TeV scale seesaw models*,*JHEP***03**(2018) 122 [arXiv:1711.07634] [INSPIRE].ADSCrossRefGoogle Scholar - [36]G.H. Duan, X. Fan, M. Frank, C. Han and J.M. Yang,
*A minimal*U(1)′*extension of MSSM in light of the B decay anomaly*,*Phys. Lett.***B 789**(2019) 54 [arXiv:1808.04116] [INSPIRE].ADSCrossRefGoogle Scholar - [37]M. Duerr, K. Schmidt-Hoberg and S. Wild,
*Self-interacting dark matter with a stable vector mediator*,*JCAP***09**(2018) 033 [arXiv:1804.10385] [INSPIRE].ADSCrossRefGoogle Scholar - [38]T. Binder, M. Gustafsson, A. Kamada, S.M.R. Sandner and M. Wiesner,
*Reannihilation of self-interacting dark matter*,*Phys. Rev.***D 97**(2018) 123004 [arXiv:1712.01246] [INSPIRE].ADSGoogle Scholar - [39]S. Tulin, H.-B. Yu and K.M. Zurek,
*Beyond collisionless dark matter: particle physics dynamics for dark matter halo structure*,*Phys. Rev.***D 87**(2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar - [40]F. Kahlhoefer, K. Schmidt-Hoberg, M.T. Frandsen and S. Sarkar,
*Colliding clusters and dark matter self-interactions*,*Mon. Not. Roy. Astron. Soc.***437**(2014) 2865 [arXiv:1308.3419] [INSPIRE].ADSCrossRefGoogle Scholar - [41]F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild,
*Dark matter self-interactions from a general spin-*0*mediator*,*JCAP***08**(2017) 003 [arXiv:1704.02149] [INSPIRE].ADSCrossRefGoogle Scholar - [42]J.L. Feng, M. Kaplinghat and H.-B. Yu,
*Halo-shape and relic-density exclusions of Sommerfeld-enhanced dark matter explanations of cosmic ray excesses*,*Phys. Rev. Lett.***104**(2010) 151301 [arXiv:0911.0422] [INSPIRE].ADSCrossRefGoogle Scholar - [43]S.A. Khrapak, A.V. Ivlev, G.E. Morfill and S.K. Zhdanov,
*Scattering in the attractive Yukawa potential in the limit of strong interaction*,*Phys. Rev. Lett.***90**(2003) 225002 [INSPIRE].ADSCrossRefGoogle Scholar - [44]F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger and C. Pfrommer,
*ETHOS — an effective theory of structure formation: from dark particle physics to the matter distribution of the universe*,*Phys. Rev.***D 93**(2016) 123527 [arXiv:1512.05344] [INSPIRE].ADSMathSciNetGoogle Scholar - [45]A. Kamada and H.-B. Yu,
*Coherent propagation of PeV neutrinos and the dip in the neutrino spectrum at IceCube*,*Phys. Rev.***D 92**(2015) 113004 [arXiv:1504.00711] [INSPIRE].ADSGoogle Scholar - [46]V. Poulin, J. Lesgourgues and P.D. Serpico,
*Cosmological constraints on exotic injection of electromagnetic energy*,*JCAP***03**(2017) 043 [arXiv:1610.10051] [INSPIRE].ADSCrossRefGoogle Scholar - [47]M. Hufnagel, K. Schmidt-Hoberg and S. Wild,
*BBN constraints on MeV-scale dark sectors. Part II: electromagnetic decays*,*JCAP***11**(2018) 032 [arXiv:1808.09324] [INSPIRE]. - [48]A.L. Fitzpatrick, D. Hooper and K.M. Zurek,
*Implications of CoGeNT and DAMA for light WIMP dark matter*,*Phys. Rev.***D 81**(2010) 115005 [arXiv:1003.0014] [INSPIRE].ADSGoogle Scholar - [49]XENON collaboration,
*Dark matter search results from a one ton-year exposure of XENON*1*T*,*Phys. Rev. Lett.***121**(2018) 111302 [arXiv:1805.12562] [INSPIRE]. - [50]XENON collaboration,
*Physics reach of the XENON*1*T dark matter experiment*,*JCAP***04**(2016) 027 [arXiv:1512.07501] [INSPIRE]. - [51]DarkSide collaboration,
*DarkSide-*20*k: a*20*tonne two-phase LAr TPC for direct dark matter detection at LNGS*,*Eur. Phys. J. Plus***133**(2018) 131 [arXiv:1707.08145] [INSPIRE]. - [52]
- [53]DARWIN collaboration,
*DARWIN: towards the ultimate dark matter detector*,*JCAP***11**(2016) 017 [arXiv:1606.07001] [INSPIRE]. - [54]Super-Kamiokande collaboration,
*Searching for dark matter annihilation into neutrinos with Super-Kamiokande*, in*Proceedings, Meeting of the APS Division of Particles and Fields (DPF*2015*)*, Ann Arbor, MI, U.S.A., 4–8 August 2015 [arXiv:1510.07999] [INSPIRE]. - [55]R.K. Leane, T.R. Slatyer, J.F. Beacom and K.C.Y. Ng,
*GeV-scale thermal WIMPs: not even slightly ruled out*,*Phys. Rev.***D 98**(2018) 023016 [arXiv:1805.10305] [INSPIRE].ADSGoogle Scholar - [56]J.L. Feng, M. Kaplinghat and H.-B. Yu,
*Sommerfeld enhancements for thermal relic dark matter*,*Phys. Rev.***D 82**(2010) 083525 [arXiv:1005.4678] [INSPIRE].ADSGoogle Scholar - [57]BaBar collaboration,
*Test of lepton universality in*ϒ(1*S*)*decays at BaBar*,*Phys. Rev. Lett.***104**(2010) 191801 [arXiv:1002.4358] [INSPIRE]. - [58]ATLAS collaboration,
*Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in*36*fb*^{−1}*of pp collisions at*\( \sqrt{s}=13 \)*TeV with the ATLAS detector*,*JHEP***01**(2018) 055 [arXiv:1709.07242] [INSPIRE]. - [59]CMS collaboration,
*Search for low mass vector resonances decaying into quark-antiquark pairs in proton-proton collisions at*\( \sqrt{s}=13 \)*TeV*,*JHEP***01**(2018) 097 [arXiv:1710.00159] [INSPIRE]. - [60]ATLAS collaboration,
*Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at*\( \sqrt{s}=13 \)*TeV with the ATLAS detector*,*Phys. Lett.***B 788**(2019) 316 [arXiv:1801.08769] [INSPIRE]. - [61]Particle Data Group collaboration,
*Review of particle physics*,*Phys. Rev.***D 98**(2018) 030001 [INSPIRE]. - [62]W. Altmannshofer, P. Stangl and D.M. Straub,
*Interpreting hints for lepton flavor universality violation*,*Phys. Rev.***D 96**(2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar - [63]G. D’Amico et al.,
*Flavour anomalies after the*\( {R}_{K^{*}} \)*measurement*,*JHEP***09**(2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar - [64]B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto,
*Patterns of new physics in b*→*sℓ*^{+}*ℓ*^{−}*transitions in the light of recent data*,*JHEP***01**(2018) 093 [arXiv:1704.05340] [INSPIRE].ADSCrossRefGoogle Scholar - [65]G. Hiller and I. Nišandžić,
*R*_{K}*and*\( {R}_{K^{*}} \)*beyond the Standard Model*,*Phys. Rev.***D 96**(2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar - [66]M. Ciuchini et al.,
*On flavourful easter eggs for new physics hunger and lepton flavour universality violation*,*Eur. Phys. J.***C 77**(2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar - [67]L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi,
*Towards the discovery of new physics with lepton-universality ratios of b*→*sℓℓ decays*,*Phys. Rev.***D 96**(2017) 093006 [arXiv:1704.05446] [INSPIRE].ADSGoogle Scholar - [68]A.K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar and D. London,
*New physics in b*→*sμ*^{+}*μ*^{−}*after the measurement of*\( {R}_{K^{*}} \),*Phys. Rev.***D 96**(2017) 095009 [arXiv:1704.07397] [INSPIRE].Google Scholar - [69]CMS and LHCb collaborations,
*Observation of the rare B*_{s}^{0}→*μ*^{+}*μ*^{−}*decay from the combined analysis of CMS and LHCb data*,*Nature***522**(2015) 68 [arXiv:1411.4413] [INSPIRE]. - [70]A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \)
*decays in the Standard Model and beyond*,*JHEP***02**(2015) 184 [arXiv:1409.4557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar - [71]Belle collaboration,
*Search for*\( B\to {h}^{\left(\ast \right)}\nu \overline{\nu} \)*with the full Belle*ϒ(4*S*)*data sample*,*Phys. Rev.***D 87**(2013) 111103 [arXiv:1303.3719] [INSPIRE]. - [72]BaBar collaboration,
*Search for*\( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \)*and invisible quarkonium decays*,*Phys. Rev.***D 87**(2013) 112005 [arXiv:1303.7465] [INSPIRE]. - [73]M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini,
*Next-to-leading order QCD corrections to*Δ*F*= 2*effective Hamiltonians*,*Nucl. Phys.***B 523**(1998) 501 [hep-ph/9711402] [INSPIRE]. - [74]A.J. Buras, M. Misiak and J. Urban,
*Two-loop QCD anomalous dimensions of flavor-changing four-quark operators within and beyond the Standard Model*,*Nucl. Phys.***B 586**(2000) 397 [hep-ph/0005183] [INSPIRE]. - [75]T. Inami and C.S. Lim,
*Effects of superheavy quarks and leptons in low-energy weak processes*\( KL\to \mu \overline{\mu},\kern0.5em {K}^{+}\to {\pi}^{+}\nu \nu \kern0.5em and\kern0.5em {K}^0\leftrightarrow {\overline{K}}^0 \),*Prog. Theor. Phys.***65**(1981) 297 [*Erratum ibid.***65**(1981) 1772] [INSPIRE]. - [76]A.J. Buras, M. Jamin and P.H. Weisz,
*Leading and next-to-leading QCD corrections to ϵ-parameter and*\( {B}^0\hbox{--} {\overline{B}}^0 \)*mixing in the presence of a heavy top quark*,*Nucl. Phys.***B 347**(1990) 491 [INSPIRE].ADSCrossRefGoogle Scholar - [77]A. Lenz et al.,
*Anatomy of new physics in*\( B-\overline{B} \)*mixing*,*Phys. Rev.***D 83**(2011) 036004 [arXiv:1008.1593] [INSPIRE].ADSGoogle Scholar - [78]UTfit collaboration,
*Model-independent constraints on*Δ*F*= 2*operators and the scale of new physics*,*JHEP***03**(2008) 049 [arXiv:0707.0636] [INSPIRE]. - [79]ETM collaboration,
*Leptonic decay constants f*_{K}*, f*_{D}*, and*\( {f}_{D_s} \)*with N*_{f}= 2 + 1 + 1*twisted-mass lattice QCD*,*Phys. Rev.***D 91**(2015) 054507 [arXiv:1411.7908] [INSPIRE]. - [80]ETM collaboration, Δ
*S*= 2*and*Δ*C*= 2*bag parameters in the Standard Model and beyond from N*_{f}= 2 + 1 + 1*twisted-mass lattice QCD*,*Phys. Rev.***D 92**(2015) 034516 [arXiv:1505.06639] [INSPIRE]. - [81]E. Golowich, J. Hewett, S. Pakvasa and A.A. Petrov,
*Implications of*\( {D}^0\hbox{--} {\overline{D}}^0 \)*mixing for new physics*,*Phys. Rev.***D 76**(2007) 095009 [arXiv:0705.3650] [INSPIRE].ADSGoogle Scholar - [82]HFLAV collaboration,
*Averages of b-hadron, c-hadron and τ-lepton properties as of summer*2016,*Eur. Phys. J.***C 77**(2017) 895 [arXiv:1612.07233] [INSPIRE]. - [83]Belle collaboration,
*Search for lepton flavor violating τ decays into three leptons with*719*million produced τ*^{+}*τ*^{−}*pairs*,*Phys. Lett.***B 687**(2010) 139 [arXiv:1001.3221] [INSPIRE]. - [84]ATLAS collaboration,
*Search for new high-mass phenomena in the dilepton final state using*36*fb*^{−1}*of proton-proton collision data at*\( \sqrt{s}=13 \)*TeV with the ATLAS detector*,*JHEP***10**(2017) 182 [arXiv:1707.02424] [INSPIRE]. - [85]ATLAS collaboration,
*Search for lepton-flavor violation in different-flavor, high-mass final states in pp collisions at*\( \sqrt{s}=13 \)*TeV with the ATLAS detector*,*Phys. Rev.***D 98**(2018) 092008 [arXiv:1807.06573] [INSPIRE]. - [86]ATLAS collaboration,
*Measurements of four-lepton production at the Z resonance in pp collisions at*\( \sqrt{s}=7 \)*and*8*TeV with ATLAS*,*Phys. Rev. Lett.***112**(2014) 231806 [arXiv:1403.5657] [INSPIRE]. - [87]C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_{B_3-3{L}_{\mu }} \)
*gauge symmetry as a simple description of b*→*s anomalies*,*Phys. Rev.***D 98**(2018) 095002 [arXiv:1705.00915] [INSPIRE].ADSGoogle Scholar - [88]I. Hoenig, G. Samach and D. Tucker-Smith,
*Searching for dilepton resonances below the Z mass at the LHC*,*Phys. Rev.***D 90**(2014) 075016 [arXiv:1408.1075] [INSPIRE].ADSGoogle Scholar - [89]CEPC Study Group collaboration,
*CEPC conceptual design report: volume*1*— accelerator*, arXiv:1809.00285 [INSPIRE]. - [90]ILC collaboration,
*The International Linear Collider technical design report — volume*2*: physics*, arXiv:1306.6352 [INSPIRE]. - [91]LCC Physics Working Group collaboration,
*Physics case for the*250*GeV stage of the International Linear Collider*, arXiv:1710.07621 [INSPIRE]. - [92]TLEP Design Study Working Group collaboration,
*First look at the physics case of TLEP*,*JHEP***01**(2014) 164 [arXiv:1308.6176] [INSPIRE]. - [93]M. He, X.-G. He, C.-K. Huang and G. Li,
*Search for a heavy dark photon at future e*^{+}*e*^{−}*colliders*,*JHEP***03**(2018) 139 [arXiv:1712.09095] [INSPIRE].ADSCrossRefGoogle Scholar - [94]S. Cassel, D.M. Ghilencea and G.G. Ross,
*Electroweak and dark matter constraints on a Z*′*in models with a hidden valley*,*Nucl. Phys.***B 827**(2010) 256 [arXiv:0903.1118] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar - [95]A. Hook, E. Izaguirre and J.G. Wacker,
*Model independent bounds on kinetic mixing*,*Adv. High Energy Phys.***2011**(2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar - [96]K. Yamamoto,
*The phase transition associated with intermediate gauge symmetry breaking in superstring models*,*Phys. Lett.***B 168**(1986) 341 [INSPIRE].ADSCrossRefGoogle Scholar - [97]D.H. Lyth and E.D. Stewart,
*Thermal inflation and the moduli problem*,*Phys. Rev.***D 53**(1996) 1784 [hep-ph/9510204] [INSPIRE].