Neutrino non-standard interactions and dark matter searches with multi-ton scale detectors

  • D. Aristizabal Sierra
  • N. RojasEmail author
  • M. H. G. Tytgat
Open Access
Regular Article - Theoretical Physics


Future dark matter (DM) direct detection searches will be subject to irreducible neutrino backgrounds that will challenge the identification of an actual WIMP signal in experiments without directionality sensitivity. We study the impact of neutrino-quark non-standard interactions (NSI) on this background, assuming the constraints from neutrino oscillations and the recent COHERENT experiment data, which are relevant for NSI mediated by light mediators, \( {m}_{\mathrm{med}}\lesssim \mathcal{O}\left(\mathrm{GeV}\right) \). We calculate the expected number of neutrino-nucleus elastic scattering events in a Xe-based ton-size dark matter detector, including solar neutrino fluxes from the pp chain and CNO cycle as well as sub-GeV atmospheric fluxes and taking into account NSI effects in both propagation and detection. We find that sizable deviations from the standard model expectation are possible, but are more pronounced for flavor-diagonal couplings, in particular for electron neutrinos. We show that neutrino NSI can enhance or deplete the neutrino-nucleus event rate, which may impact DM searches in multi-ton detectors.


Neutrino Physics Solar and Atmospheric Neutrinos 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Griest, Galactic microlensing as a method of detecting massive compact halo objects, Astrophys. J. 366 (1991) 412 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].
  4. [4]
    XENON collaboration, E. Aprile et al., First dark matter search results from the XENON1T experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  5. [5]
    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  6. [6]
    J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
  7. [7]
    C.A. O’Hare, Dark matter astrophysical uncertainties and the neutrino floor, Phys. Rev. D 94 (2016) 063527 [arXiv:1604.03858] [INSPIRE].
  8. [8]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].
  9. [9]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    CHARM collaboration, J. Dorenbosch et al., Experimental verification of the universality of ν e and ν μ coupling to the neutral weak current, Phys. Lett. B 180 (1986) 303 [INSPIRE].
  11. [11]
    NuTeV collaboration, G.P. Zeller et al., A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].
  12. [12]
    COHERENT collaboration, D. Akimov et al., Observation of coherent elastic neutrino-nucleus scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
  13. [13]
    Y. Farzan and M. Tortola, Neutrino oscillations and non-standard interactions, Front. in Phys. 6 (2018) 10 [arXiv:1710.09360] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Coloma, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, COHERENT enlightenment of the neutrino dark side, Phys. Rev. D 96 (2017) 115007 [arXiv:1708.02899] [INSPIRE].
  15. [15]
    P. Coloma, P.B. Denton, M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Curtailing the dark side in non-standard neutrino interactions, JHEP 04 (2017) 116 [arXiv:1701.04828] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.N. Bahcall, A.M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology and neutrino fluxes, Astrophys. J. 621 (2005) L85 [astro-ph/0412440] [INSPIRE].
  17. [17]
    A. Friedland, C. Lunardini and M. Maltoni, Atmospheric neutrinos as probes of neutrino-matter interactions, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264] [INSPIRE].
  18. [18]
    D.G. Cerdeño, M. Fairbairn, T. Jubb, P.A.N. Machado, A.C. Vincent and C. Bœhm, Physics from solar neutrinos in dark matter direct detection experiments, JHEP 05 (2016) 118 [Erratum ibid. 09 (2016) 048] [arXiv:1604.01025] [INSPIRE].
  19. [19]
    E. Bertuzzo, F.F. Deppisch, S. Kulkarni, Y.F. Perez Gonzalez and R. Zukanovich Funchal, Dark matter and exotic neutrino interactions in direct detection searches, JHEP 04 (2017) 073 [Erratum ibid. 04 (2017) 073] [arXiv:1701.07443] [INSPIRE].
  20. [20]
    B. Dutta, S. Liao, L.E. Strigari and J.W. Walker, Non-standard interactions of solar neutrinos in dark matter experiments, Phys. Lett. B 773 (2017) 242 [arXiv:1705.00661] [INSPIRE].
  21. [21]
    D. Aristizabal Sierra, N. Rojas and V.D. Romeri, Neutrino floor and non-standard interactions with light mediators, in preparation.Google Scholar
  22. [22]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].
  23. [23]
    Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].
  24. [24]
    Y. Farzan and I.M. Shoemaker, Lepton flavor violating non-standard interactions via light mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K.S. Babu, A. Friedland, P.A.N. Machado and I. Mocioiu, Flavor gauge models below the Fermi scale, JHEP 12 (2017) 096 [arXiv:1705.01822] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Bolanos, O.G. Miranda, A. Palazzo, M.A. Tortola and J.W.F. Valle, Probing non-standard neutrino-electron interactions with solar and reactor neutrinos, Phys. Rev. D 79 (2009) 113012 [arXiv:0812.4417] [INSPIRE].
  27. [27]
    F.J. Escrihuela, O.G. Miranda, M.A. Tortola and J.W.F. Valle, Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data, Phys. Rev. D 80 (2009) 105009 [Erratum ibid. D 80 (2009) 129908] [arXiv:0907.2630] [INSPIRE].
  28. [28]
    J. Liao and D. Marfatia, COHERENT constraints on nonstandard neutrino interactions, Phys. Lett. B 775 (2017) 54 [arXiv:1708.04255] [INSPIRE].
  29. [29]
    D.Z. Freedman, Coherent neutrino nucleus scattering as a probe of the weak neutral current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].
  30. [30]
    D.Z. Freedman, D.N. Schramm and D.L. Tubbs, The weak neutral current and its effects in stellar collapse, Ann. Rev. Nucl. Part. Sci. 27 (1977) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.H. Helm, Inelastic and elastic scattering of 187 MeV electrons from selected even-even nuclei, Phys. Rev. 104 (1956) 1466 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].
  34. [34]
    M. Lindner, W. Rodejohann and X.-J. Xu, Coherent neutrino-nucleus scattering and new neutrino interactions, JHEP 03 (2017) 097 [arXiv:1612.04150] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2017, arXiv:1708.01186 [INSPIRE].
  36. [36]
    T.-K. Kuo and J.T. Pantaleone, The solar neutrino problem and three neutrino oscillations, Phys. Rev. Lett. 57 (1986) 1805 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.J. Parke, Nonadiabatic level crossing in resonant neutrino oscillations, Phys. Rev. Lett. 57 (1986) 1275 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    T.-K. Kuo and J.T. Pantaleone, Neutrino oscillations in matter, Rev. Mod. Phys. 61 (1989) 937 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E.K. Akhmedov, Neutrino physics, in Proceedings, Summer School in Particle Physics, Trieste Italy, 21 June-9 July 1999, pg. 103 [hep-ph/0001264] [INSPIRE].
  41. [41]
    G. Battistoni, A. Ferrari, T. Montaruli and P.R. Sala, The atmospheric neutrino flux below 100 MeV: the FLUKA results, Astropart. Phys. 23 (2005) 526 [INSPIRE].
  42. [42]
    A. Ferrari, P.R. Sala, A. Fasso and J. Ranft, FLUKA: a multi-particle transport code (program version 2005), (2005) [INSPIRE].
  43. [43]
    PandaX-II collaboration, X. Cui et al., Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  44. [44]
    The PandaX-4T Dark Matter Experiment webpage,

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • D. Aristizabal Sierra
    • 1
    • 2
  • N. Rojas
    • 1
    Email author
  • M. H. G. Tytgat
    • 3
  1. 1.Universidad Técnica Federico Santa María — Departamento de FísicaValparaísoChile
  2. 2.IFPA, Dép. AGO, Université de LiègeLiège 1Belgium
  3. 3.Université Libre de Bruxelles-Service de Physique Théorique CP225BruxellesBelgium

Personalised recommendations