Advertisement

Coherence effects in disordered geometries with a field-theory dual

  • Tomás Andrade
  • Antonio M. García-García
  • Bruno Loureiro
Open Access
Regular Article - Theoretical Physics
  • 45 Downloads

Abstract

We investigate the holographic dual of a probe scalar in an asymptotically Anti-de-Sitter (AdS) disordered background which is an exact solution of Einstein’s equations in three bulk dimensions. Unlike other approaches to model disorder in holography, we are able to explore quantum wave-like interference effects between an oscillating or random source and the geometry. In the weak-disorder limit, we compute analytically and numerically the one-point correlation function of the dual field theory for different choices of sources and backgrounds. The most interesting feature is the suppression of the one-point function in the presence of an oscillating source and weak random background. We have also computed analytically and numerically the two-point function in the weak disorder limit. We have found that, in general, the perturbative contribution induces an additional power-law decay whose exponent depends on the distribution of disorder. For certain choices of the gravity background, this contribution becomes dominant for large separations which indicates breaking of perturbation theory and the possible existence of a phase transition induced by disorder.

Keywords

AdS-CFT Correspondence Duality in Gauge Field Theories Holography and condensed matter physics (AdS/CMT) Random Systems 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958) 1492 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R. Abou-Chacra, D.J. Thouless and P.W. Anderson, A selfconsistent theory of localization, J. Phys. C 6 (1973) 1734.ADSGoogle Scholar
  3. [3]
    D. Basko, I. Aleiner and B. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Annals Phys. 321 (2006) 1126.ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S. John, Electromagnetic absorption in a disordered medium near a photon mobility edge, Phys. Rev. Lett. 53 (1984) 2169.ADSCrossRefGoogle Scholar
  5. [5]
    P.W. Anderson, The question of classical localization a theory of white paint?, Phil. Mag. B 52 (1985) 505.ADSCrossRefGoogle Scholar
  6. [6]
    Y. Bardoux, M.M. Caldarelli and C. Charmousis, Shaping black holes with free fields, JHEP 05 (2012) 054 [arXiv:1202.4458] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T. Andrade, S.A. Gentle and B. Withers, Drude in D major, JHEP 06 (2016) 134 [arXiv:1512.06263] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Andrade, A simple model of momentum relaxation in Lifshitz holography, arXiv:1602.00556 [INSPIRE].
  10. [10]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP 12 (2014) 170 [arXiv:1409.8346] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160 [arXiv:1406.4134] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R.A. Davison and B. Goutéraux, Dissecting holographic conductivities, JHEP 09 (2015) 090 [arXiv:1505.05092] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Baggioli and O. Pujolàs, On holographic disorder-driven metal-insulator transitions, JHEP 01 (2017) 040 [arXiv:1601.07897] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Goutéraux, E. Kiritsis and W.-J. Li, Effective holographic theories of momentum relaxation and violation of conductivity bound, JHEP 04 (2016) 122 [arXiv:1602.01067] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A.M. García-García, B. Loureiro and A. Romero-Bermúdez, Transport in a gravity dual with a varying gravitational coupling constant, Phys. Rev. D 94 (2016) 086007 [arXiv:1606.01142] [INSPIRE].
  17. [17]
    S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    R.A. Davison, K. Schalm and J. Zaanen, Holographic duality and the resistivity of strange metals, Phys. Rev. B 89 (2014) 245116 [arXiv:1311.2451] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Lucas and S. Sachdev, Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B 91 (2015) 195122 [arXiv:1502.04704] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A. Lucas, Conductivity of a strange metal: from holography to memory functions, JHEP 03 (2015) 071 [arXiv:1501.05656] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040 [arXiv:1311.3292] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Donos, B. Goutéraux and E. Kiritsis, Holographic Metals and Insulators with Helical Symmetry, JHEP 09 (2014) 038 [arXiv:1406.6351] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  25. [25]
    M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Aprile and T. Ishii, A Simple Holographic Model of a Charged Lattice, JHEP 10 (2014) 151 [arXiv:1406.7193] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Donos and J.P. Gauntlett, The thermoelectric properties of inhomogeneous holographic lattices, JHEP 01 (2015) 035 [arXiv:1409.6875] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Kachru, A. Karch and S. Yaida, Holographic Lattices, Dimers and Glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical Conductivity with Holographic Lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    G.T. Horowitz, J.E. Santos and D. Tong, Further Evidence for Lattice-Induced Scaling, JHEP 11 (2012) 102 [arXiv:1209.1098] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Ling, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic Lattice in Einstein-Maxwell-Dilaton Gravity, JHEP 11 (2013) 006 [arXiv:1309.4580] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Chesler, A. Lucas and S. Sachdev, Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev. D 89 (2014) 026005 [arXiv:1308.0329] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, Disordered Systems and the Replica Method in AdS/CFT, JHEP 12 (2008) 065 [arXiv:0810.5394] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    O. Aharony, Z. Komargodski and S. Yankielowicz, Disorder in Large-N Theories, JHEP 04 (2016) 013 [arXiv:1509.02547] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  37. [37]
    J. Cardy, Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications, J. Phys. A 46 (2013) 494001 [arXiv:1302.4279] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  38. [38]
    S. Ryu, T. Takayanagi and T. Ugajin, Holographic Conductivity in Disordered Systems, JHEP 04 (2011) 115 [arXiv:1103.6068] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    O. Saremi, Disorder in Gauge/Gravity Duality, Pole Spectrum Statistics and Random Matrix Theory, Class. Quant. Grav. 31 (2014) 095014 [arXiv:1206.1856] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    H.B. Zeng, Possible Anderson localization in a holographic superconductor, Phys. Rev. D 88 (2013) 126004 [arXiv:1310.5753] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D. Arean, A. Farahi, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, Holographic superconductor with disorder, Phys. Rev. D 89 (2014) 106003 [arXiv:1308.1920] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D. Areán, A. Farahi, L.A. Pando Zayas, I. Salazar Landea and A. Scardicchio, Holographic p-wave Superconductor with Disorder, JHEP 07 (2015) 046 [arXiv:1407.7526] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    D. Arean, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, Holographic disorder driven superconductor-metal transition, Phys. Rev. D 94 (2016) 106003 [arXiv:1507.02280] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Lucas and S. Sachdev, Conductivity of weakly disordered strange metals: from conformal to hyperscaling-violating regimes, Nucl. Phys. B 892 (2015) 239 [arXiv:1411.3331] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    M. Araujo, D. Arean and J.M. Lizana, Noisy branes, JHEP 07 (2016) 091 [arXiv:1603.09625] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Adams and S. Yaida, Disordered holographic systems: Functional renormalization, Phys. Rev. D 92 (2015) 126008 [arXiv:1102.2892] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    A. Adams and S. Yaida, Disordered holographic systems: Marginal relevance of imperfection, Phys. Rev. D 90 (2014) 046007 [arXiv:1201.6366] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S.A. Hartnoll and J.E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett. 112 (2014) 231601 [arXiv:1402.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Emergent scale invariance of disordered horizons, JHEP 09 (2015) 160 [arXiv:1504.03324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Thermal conductivity at a disordered quantum critical point, JHEP 04 (2016) 022 [arXiv:1508.04435] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  52. [52]
    S.A. Hartnoll, D.M. Ramirez and J.E. Santos, Entropy production, viscosity bounds and bumpy black holes, JHEP 03 (2016) 170 [arXiv:1601.02757] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  53. [53]
    D.K. O’Keeffe and A.W. Peet, Perturbatively charged holographic disorder, Phys. Rev. D 92 (2015) 046004 [arXiv:1504.03288] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A.M. García-García and B. Loureiro, Marginal and Irrelevant Disorder in Einstein-Maxwell backgrounds, Phys. Rev. D 93 (2016) 065025 [arXiv:1512.00194] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    A. Donos and J.P. Gauntlett, On the thermodynamics of periodic AdS black branes, JHEP 10 (2013) 038 [arXiv:1306.4937] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    A. Donos and J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons, JHEP 11 (2014) 081 [arXiv:1406.4742] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Donos and J.P. Gauntlett, Navier-Stokes Equations on Black Hole Horizons and DC Thermoelectric Conductivity, Phys. Rev. D 92 (2015) 121901 [arXiv:1506.01360] [INSPIRE].ADSzbMATHGoogle Scholar
  58. [58]
    A. Donos, J.P. Gauntlett, T. Griffin and L. Melgar, DC Conductivity of Magnetised Holographic Matter, JHEP 01 (2016) 113 [arXiv:1511.00713] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    A. Donos, J.P. Gauntlett and V. Ziogas, Diffusion in inhomogeneous media, Phys. Rev. D 96 (2017) 125003 [arXiv:1708.05412] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett. 115 (2015) 221601 [arXiv:1507.00003] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Grozdanov, A. Lucas and K. Schalm, Incoherent thermal transport from dirty black holes, Phys. Rev. D 93 (2016) 061901 [arXiv:1511.05970] [INSPIRE].ADSMathSciNetGoogle Scholar
  62. [62]
    T.N. Ikeda, A. Lucas and Y. Nakai, Conductivity bounds in probe brane models, JHEP 04 (2016) 007 [arXiv:1601.07882] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  63. [63]
    A. Lucas, Hydrodynamic transport in strongly coupled disordered quantum field theories, New J. Phys. 17 (2015) 113007 [arXiv:1506.02662] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    B.L. Altshuler, D. Khmel’nitzkii, A.I. Larkin and P.A. Lee, Magnetoresistance and hall effect in a disordered two-dimensional electron gas, Phys. Rev. B B 22 (1980) 5142.ADSCrossRefGoogle Scholar
  65. [65]
    C. Fefferman and C. R. Graham, The ambient metric, arXiv:0710.0919.
  66. [66]
    C. Fefferman and C.R. Graham, Conformal Invariants, in Élie Cartan et les Mathématiques d’aujourd’hui, Société mathématique de France, Paris France (1985), pg. 95.Google Scholar
  67. [67]
    K. Skenderis and S.N. Solodukhin, Quantum effective action from the AdS/CFT correspondence, Phys. Lett. B 472 (2000) 316 [hep-th/9910023].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. 115B (1982) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    R.A. Janik, J. Jankowski and P. Witkowski, Conformal defects in supergravity-backreacted Dirac delta sources, JHEP 07 (2015) 050 [arXiv:1503.08459] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    C. Li and J. Lucietti, Three-dimensional black holes and descendants, Phys. Lett. B 738 (2014) 48 [arXiv:1312.2626] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB)Universitat de BarcelonaBarcelonaSpain
  3. 3.Shanghai Center for Complex Physics, Department of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  4. 4.TCM Group, Cavendish LaboratoryUniversity of CambridgeCambridgeU.K.

Personalised recommendations