Advertisement

Combination of KLOE σ (e+e → π+πγ(γ)) measurements and determination of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}} \) in the energy range 0.10 < s < 0.95 GeV2

  • The KLOE-2 collaboration
  • A. Anastasi
  • D. Babusci
  • M. Berlowski
  • C. Bloise
  • F. Bossi
  • P. Branchini
  • A. Budano
  • L. Caldeira Balkeståhl
  • B. Cao
  • F. Ceradini
  • P. Ciambrone
  • F. Curciarello
  • E. Czerwinski
  • G. D’Agostini
  • E. Danè
  • V. De Leo
  • E. De Lucia
  • A. De Santis
  • P. De Simone
  • A. Di Cicco
  • A. Di Domenico
  • D. Domenici
  • A. D’Uffizi
  • A. Fantini
  • G. Fantini
  • P. Fermani
  • S. Fiore
  • A. Gajos
  • P. Gauzzi
  • S. Giovannella
  • E. Graziani
  • V. L. Ivanov
  • T. Johansson
  • X. Kang
  • D. Kisielewska-Kaminska
  • E. A. Kozyrev
  • W. Krzemien
  • A. Kupsc
  • S. Loffredo
  • P. A. Lukin
  • G. Mandaglio
  • M. Martini
  • R. Messi
  • S. Miscetti
  • G. Morello
  • D. Moricciani
  • P. Moskal
  • A. Passeri
  • V. Patera
  • E. Perez del Rio
  • N. Raha
  • P. Santangelo
  • M. Schioppa
  • A. Selce
  • M. Silarski
  • F. Sirghi
  • E. P. Solodov
  • L. Tortora
  • G. Venanzoni
  • W. Wislicki
  • M. Wolke
  • A. Keshavarzi
  • S.E. Müller
  • T. Teubner
Open Access
Regular Article - Experimental Physics

Abstract

The three precision measurements of the cross section σ(e+eπ+πγ(γ)) using initial state radiation by the KLOE collaboration provide an important input for the prediction of the hadronic contribution to the anomalous magnetic moment of the muon. These measurements are correlated for both statistical and systematic uncertainties and, therefore, the simultaneous use of these measurements requires covariance matrices that fully describe the correlations. We present the construction of these covariance matrices and use them to determine a combined KLOE measurement for σ(e+eπ+πγ(γ)). We find, from this combination, a two-pion contribution to the muon magnetic anomaly in the energy range 0.10 < s < 0.95 GeV2 of \( {a}_{\mu}^{\pi^{+}{\pi}^{-}}=\left(489.8\pm {1.7}_{\mathrm{stat}}\pm {4.8}_{\mathrm{sys}}\right)\times {10}^{-10} \).

Data vectors and covariance matrices are available at http://www.lnf.infn.it/kloe/ppg/ppg_2017/ppg_2017.html.

Keywords

e+-e- Experiments 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    KLOE collaboration, F. Ambrosino et al., Measurement of σ(e + e π + π γ(γ) and the dipion contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 670 (2009) 285 [arXiv:0809.3950] [INSPIRE].
  2. [2]
    S. Müller et al., Measurement of the σ(e + e π + π γ(γ)) and the dipion contribution to the muon anomaly with the KLOE detector, KLOE Note n. 221 (2008), http://www.lnf.infn.it/kloe/pub/knote/kn221.pdf.
  3. [3]
    KLOE collaboration, F. Ambrosino et al., Measurement of σ(e + e π + π ) from threshold to 0.85 GeV 2 using Initial State Radiation with the KLOE detector, Phys. Lett. B 700 (2011) 102 [arXiv:1006.5313] [INSPIRE].
  4. [4]
    P. Beltrame et al., Measurement of σ(e + e π + π ) for M ππ2 between 0.1 and 0.85 GeV 2 using the Initial State Radiation method with the KLOE detector, KLOE Note n. 225 (2011), http://www.lnf.infn.it/kloe/ppg/ppg_2010/kn225.pdf.
  5. [5]
    KLOE collaboration, D. Babusci et al., Precision measurement of σ(e + e π + π γ)(e + e μ + μ γ) and determination of the π + π contribution to the muon anomaly with the KLOE detector, Phys. Lett. B 720 (2013) 336 [arXiv:1212.4524] [INSPIRE].
  6. [6]
    P. Lukin et al., Precision measurement of the pion form factor |F π |2 from the π + π γ/μ + μ γ ratio and extraction of the dipion contribution to the muon anomaly with the KLOE detector, KLOE-2 Note K2PD-6 (2012), http://www.lnf.infn.it/kloe2/tools/getfile.php?doc_fname=K2PD-6.pdf&doc_ftype=docs.
  7. [7]
    KLOE collaboration, A. Aloisio et al., Measurement of σ(e + e π + π γ) and extraction of σ(e + e π + π ) below 1-GeV with the KLOE detector, Phys. Lett. B 606 (2005) 12 [hep-ex/0407048] [INSPIRE].
  8. [8]
    Muon g-2 collaboration, G.W. Bennett et al., Measurement of the positive muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 89 (2002) 101804 [Erratum ibid. 89 (2002) 129903] [hep-ex/0208001] [INSPIRE].
  9. [9]
    Muon g-2 collaboration, G.W. Bennett et al., Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].
  10. [10]
    Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  11. [11]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  12. [12]
    A. Keshavarzi, D. Nomura and T. Teubner, The muon g − 2 and α(M Z2): a new data-based analysis, arXiv:1802.02995 [INSPIRE].
  13. [13]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α(M Z2) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
  14. [14]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g − 2 and to alpha(MZ), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  15. [15]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(m Z2) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
  16. [16]
    F. Jegerlehner and A. Nyffeler, The Muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    F. Jegerlehner, Muon g − 2 theory: The hadronic part, EPJ Web Conf. 166 (2018) 00022 [arXiv:1705.00263] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    M. Benayoun, P. David, L. DelBuono and F. Jegerlehner, Muon g − 2 estimates: can one trust effective Lagrangians and global fits?, Eur. Phys. J. C 75 (2015) 613 [arXiv:1507.02943] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Ananthanarayan, I. Caprini, D. Das and I. Sentitemsu Imsong, Precise determination of the low-energy hadronic contribution to the muon g − 2 from analyticity and unitarity: An improved analysis, Phys. Rev. D 93 (2016) 116007 [arXiv:1605.00202] [INSPIRE].ADSGoogle Scholar
  20. [20]
    Muon g-2 collaboration, J. Grange et al., Muon (g − 2) Technical Design Report, arXiv:1501.06858 [INSPIRE].
  21. [21]
    J-PARC g-2 collaboration, T. Mibe, New g − 2 experiment at J-PARC, Chin. Phys. C 34 (2010) 745 [INSPIRE].
  22. [22]
    S.J. Brodsky and E. De Rafael, Suggested boson-lepton pair couplings and the anomalous magnetic moment of the muon, Phys. Rev. 168 (1968) 1620 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    B.E. Lautrup and E. De Rafael, Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron, Phys. Rev. 174 (1968) 1835 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Gallo et al., DAFNE status report, Conf. Proc. C 060626 (2006) 604 [INSPIRE].ADSGoogle Scholar
  25. [25]
    W. Kluge, Initial state radiation: a success story, Nucl. Phys. Proc. Suppl. 181-182 (2008) 280 [arXiv:0805.4708] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    KLOE-2 collaboration, G. Venanzoni, From Hadronic Cross section to the measurement of the Vacuum Polarization at KLOE: a fascinating endeavour, EPJ Web Conf. 166 (2018) 00021 [arXiv:1705.10365] [INSPIRE].
  27. [27]
    A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov and L. Trentadue, Hadronic cross-sections in electron - positron annihilation with tagged photon, JHEP 12 (1998) 009 [hep-ph/9804430] [INSPIRE].
  28. [28]
    M. Benayoun, S.I. Eidelman, V.N. Ivanchenko and Z.K. Silagadze, Spectroscopy at B factories using hard photon emission, Mod. Phys. Lett. A 14 (1999) 2605 [hep-ph/9910523] [INSPIRE].
  29. [29]
    S. Binner, J.H. Kuhn and K. Melnikov, Measuring σ(e + e hadrons) using tagged photon, Phys. Lett. B 459 (1999) 279 [hep-ph/9902399] [INSPIRE].
  30. [30]
    V.P. Druzhinin, S.I. Eidelman, S.I. Serednyakov and E.P. Solodov, Hadron Production via e + e Collisions with Initial State Radiation, Rev. Mod. Phys. 83 (2011) 1545 [arXiv:1105.4975] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Rodrigo, H. Czyz, J.H. Kuhn and M. Szopa, Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24 (2002) 71 [hep-ph/0112184] [INSPIRE].
  32. [32]
    H. Czyz, A. Grzelinska, J.H. Kuhn and G. Rodrigo, The Radiative return at phi and B factories: Small angle photon emission at next-to-leading order, Eur. Phys. J. C 27 (2003) 563 [hep-ph/0212225] [INSPIRE].
  33. [33]
    H. Czyz, A. Grzelinska, J.H. Kuhn and G. Rodrigo, The Radiative return at Phi and B factories: FSR at next-to-leading order, Eur. Phys. J. C 33 (2004) 333 [hep-ph/0308312] [INSPIRE].
  34. [34]
    H. Czyz, A. Grzelinska, J.H. Kuhn and G. Rodrigo, The Radiative return at phi and B factories: FSR for muon pair production at next-to-leading order, Eur. Phys. J. C 39 (2005) 411 [hep-ph/0404078] [INSPIRE].
  35. [35]
    Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies collaboration, S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66 (2010) 585 [arXiv:0912.0749] [INSPIRE].
  36. [36]
    F. Jegerlehner, Vacuum Polarisation Correction, (2016) www-com.physik.hu-berlin.de/∼fjeger/alphaQED16.tar.gz.Google Scholar
  37. [37]
    F. Jegerlehner, Status and possible improvements of electroweak effective couplings for future precision experiments, talk at Linear Collider Workshop 2010, http://www-com.physik.hu-berlin.de/∼fjeger/SMalphas1.pdf.
  38. [38]
    KLOE-2 collaboration, A. Anastasi et al., Measurement of the running of the fine structure constant below 1 GeV with the KLOE Detector, Phys. Lett. B 767 (2017) 485 [arXiv:1609.06631] [INSPIRE].
  39. [39]
    A. Hoefer, J. Gluza and F. Jegerlehner, Pion pair production with higher order radiative corrections in low energy e + e collisions, Eur. Phys. J. C 24 (2002) 51 [hep-ph/0107154] [INSPIRE].
  40. [40]
    F. Jegerlehner, Vacuum Polarisation Correction, (2003), https://www-com.physik.hu-berlin.de/∼fjeger/alphaQEDn.uu.
  41. [41]
    KLOE combination π + π γ (ppg) data web link (2017), http://www.lnf.infn.it/kloe/ppg/ppg_2017/ppg_2017.html.
  42. [42]
    S. Müller, The Why’s and How’s of covariance matrices in the KLOE ISR analyses, in Constraining the Hadronic Contributions to the Muon Anomalous Magnetic Moment, arXiv:1306.2045 [INSPIRE].
  43. [43]
    G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth. A 362 (1995) 487 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G. D’Agostini, Improved iterative Bayesian unfolding, arXiv:1010.0632.
  45. [45]
    NNPDF collaboration, R.D. Ball et al., Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].
  46. [46]
    S. Eidelman and F. Jegerlehner, Hadronic contributions to g − 2 of the leptons and to the effective fine structure constant α(M z2), Z. Phys. C 67 (1995) 585 [hep-ph/9502298] [INSPIRE].
  47. [47]
    M. Davier, A. Hoecker, B. Malaescu, C.Z. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e π + π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R.R. Akhmetshin et al., Measurement of the e + e π + π cross section with the CMD-2 detector in the 370-520 MeV c.m. energy range, JETP Lett. 84 (2006) 413 [hep-ex/0610016] [INSPIRE].
  49. [49]
    CMD-2 collaboration, R.R. Akhmetshin et al., High-statistics measurement of the pion form factor in the rho-meson energy range with the CMD-2 detector, Phys. Lett. B 648 (2007) 28 [hep-ex/0610021] [INSPIRE].
  50. [50]
    CMD-2 collaboration, R.R. Akhmetshin et al., Reanalysis of hadronic cross-section measurements at CMD-2, Phys. Lett. B 578 (2004) 285 [hep-ex/0308008] [INSPIRE].
  51. [51]
    M.N. Achasov et al., Update of the e + e π + π cross-section measured by SND detector in the energy region 400 < \( \sqrt{s} \) < 1000 MeV, J. Exp. Theor. Phys. 103 (2006) 380 [hep-ex/0605013] [INSPIRE].
  52. [52]
    BaBar collaboration, B. Aubert et al., Precise measurement of the e + e π + π (γ) cross section with the Initial State Radiation method at BABAR, Phys. Rev. Lett. 103 (2009) 231801 [arXiv:0908.3589] [INSPIRE].
  53. [53]
    BESIII collaboration, M. Ablikim et al., Measurement of the e + e π + π cross section between 600 and 900 MeV using initial state radiation, Phys. Lett. B 753 (2016) 629 [arXiv:1507.08188] [INSPIRE].
  54. [54]
    G.J. Gounaris and J.J. Sakurai, Finite width corrections to the vector meson dominance prediction for ρe + e , Phys. Rev. Lett. 21 (1968) 244 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • The KLOE-2 collaboration
  • A. Anastasi
    • 5
    • 3
  • D. Babusci
    • 3
  • M. Berlowski
    • 3
    • 22
  • C. Bloise
    • 3
  • F. Bossi
    • 3
  • P. Branchini
    • 19
  • A. Budano
    • 18
    • 19
  • L. Caldeira Balkeståhl
    • 21
  • B. Cao
    • 21
  • F. Ceradini
    • 18
    • 19
  • P. Ciambrone
    • 3
  • F. Curciarello
    • 3
  • E. Czerwinski
    • 2
  • G. D’Agostini
    • 14
    • 15
  • E. Danè
    • 3
  • V. De Leo
    • 17
  • E. De Lucia
    • 3
  • A. De Santis
    • 3
  • P. De Simone
    • 3
  • A. Di Cicco
    • 18
    • 19
  • A. Di Domenico
    • 14
    • 15
  • D. Domenici
    • 3
  • A. D’Uffizi
    • 3
  • A. Fantini
    • 16
    • 17
  • G. Fantini
    • 4
  • P. Fermani
    • 3
  • S. Fiore
    • 20
    • 15
  • A. Gajos
    • 2
  • P. Gauzzi
    • 14
    • 15
  • S. Giovannella
    • 3
  • E. Graziani
    • 19
  • V. L. Ivanov
    • 7
    • 8
  • T. Johansson
    • 21
  • X. Kang
    • 3
  • D. Kisielewska-Kaminska
    • 2
  • E. A. Kozyrev
    • 7
    • 8
  • W. Krzemien
    • 22
  • A. Kupsc
    • 21
  • S. Loffredo
    • 18
    • 19
  • P. A. Lukin
    • 7
    • 8
  • G. Mandaglio
    • 6
    • 1
  • M. Martini
    • 3
    • 13
  • R. Messi
    • 16
    • 17
  • S. Miscetti
    • 3
  • G. Morello
    • 3
  • D. Moricciani
    • 17
  • P. Moskal
    • 2
  • A. Passeri
    • 19
  • V. Patera
    • 12
    • 15
  • E. Perez del Rio
    • 3
  • N. Raha
    • 17
  • P. Santangelo
    • 3
  • M. Schioppa
    • 10
    • 11
  • A. Selce
    • 18
    • 19
  • M. Silarski
    • 2
  • F. Sirghi
    • 3
  • E. P. Solodov
    • 7
    • 8
  • L. Tortora
    • 19
  • G. Venanzoni
    • 9
  • W. Wislicki
    • 22
  • M. Wolke
    • 21
  • A. Keshavarzi
    • 23
  • S.E. Müller
    • 24
  • T. Teubner
    • 23
  1. 1.INFN Sezione di CataniaCataniaItaly
  2. 2.Institute of PhysicsJagiellonian UniversityCracowPoland
  3. 3.Laboratori Nazionali di Frascati dell’INFNFrascatiItaly
  4. 4.Gran Sasso Science InstituteL’AquilaItaly
  5. 5.Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della TerraUniversità di MessinaMessinaItaly
  6. 6.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità di MessinaMessinaItaly
  7. 7.Budker Institute of Nuclear PhysicsNovosibirskRussia
  8. 8.Novosibirsk State UniversityNovosibirskRussia
  9. 9.INFN Sezione di PisaPisaItaly
  10. 10.Dipartimento di FisicaUniversità della CalabriaRendeItaly
  11. 11.INFN Gruppo collegato di CosenzaRendeItaly
  12. 12.Dipartimento di Scienze di Base ed Applicate per l’IngegneriaUniversità “Sapienza”RomaItaly
  13. 13.Dipartimento di Scienze e Tecnologie applicateUniversità “Guglielmo Marconi”RomaItaly
  14. 14.Dipartimento di FisicaUniversità “Sapienza”RomaItaly
  15. 15.INFN Sezione di RomaRomaItaly
  16. 16.Dipartimento di FisicaUniversità “Tor Vergata”RomaItaly
  17. 17.INFN Sezione di Roma Tor VergataRomaItaly
  18. 18.Dipartimento di Matematica e FisicaUniversità “Roma Tre”RomaItaly
  19. 19.INFN Sezione di Roma TreRomaItaly
  20. 20.ENEA, Department of Fusion and Technology for Nuclear Safety and SecurityFrascati (RM)Italy
  21. 21.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  22. 22.National Centre for Nuclear ResearchWarsawPoland
  23. 23.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolU.K.
  24. 24.Department of Information Services and Computing & Institute of Radiation PhysicsHelmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations