Advertisement

The supersymmetric Georgi-Machacek model

  • Roberto Vega
  • Roberto Vega-Morales
  • Keping Xie
Open Access
Regular Article - Theoretical Physics

Abstract

We show that the well known Georgi-Machacek (GM) model can be realized as a limit of the recently constructed Supersymmetric Custodial Higgs Triplet Model (SCTM) which in general contains a significantly more complex scalar spectrum. We dub this limit of the SCTM, which gives a weakly coupled origin for the GM model at the electroweak scale, the Supersymmetric GM (SGM) model. We derive a mapping between the SGM and GM models using it to show how a supersymmetric origin implies constraints on the Higgs potential in conventional GM model constructions which would generically not be present. We then perform a simplified phenomenological study of diphoton and ZZ signals for a pair of benchmark scenarios to illustrate under what circumstances the GM model can mimic the SGM model and when they should be easily distinguishable.

Keywords

Supersymmetry Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
  5. [5]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  6. [6]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at s = 13 TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  7. [7]
    CMS collaboration, Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state, Phys. Lett. B 775 (2017) 1 [arXiv:1707.00541] [INSPIRE].
  8. [8]
    ATLAS collaboration, Measurement of inclusive and differential cross sections in the HZZ * → 4ℓ decay channel in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 132 [arXiv:1708.02810] [INSPIRE].
  9. [9]
    S. Blasi, S. De Curtis and K. Yagyu, Effects of custodial symmetry breaking in the Georgi-Machacek model at high energies, Phys. Rev. D 96 (2017) 015001 [arXiv:1704.08512] [INSPIRE].ADSGoogle Scholar
  10. [10]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  11. [11]
    P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin Breaking in Technicolor Models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I. Low and J. Lykken, Revealing the electroweak properties of a new scalar resonance, JHEP 10 (2010) 053 [arXiv:1005.0872] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.S. Chanowitz and M. Golden, Higgs Boson Triplets With M (W) = M (Z) cos θω, Phys. Lett. 165B (1985) 105 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.F. Gunion, R. Vega and J. Wudka, Higgs triplets in the standard model, Phys. Rev. D 42 (1990) 1673 [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.F. Gunion, R. Vega and J. Wudka, Naturalness problems for ρ = 1 and other large one loop effects for a standard model Higgs sector containing triplet fields, Phys. Rev. D 43 (1991) 2322 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C. Englert, E. Re and M. Spannowsky, Triplet Higgs boson collider phenomenology after the LHC, Phys. Rev. D 87 (2013) 095014 [arXiv:1302.6505] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C.-W. Chiang and K. Yagyu, Testing the custodial symmetry in the Higgs sector of the Georgi-Machacek model, JHEP 01 (2013) 026 [arXiv:1211.2658] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.-W. Chiang, S. Kanemura and K. Yagyu, Novel constraint on the parameter space of the Georgi-Machacek model with current LHC data, Phys. Rev. D 90 (2014) 115025 [arXiv:1407.5053] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C.-W. Chiang and K. Tsumura, Properties and searches of the exotic neutral Higgs bosons in the Georgi-Machacek model, JHEP 04 (2015) 113 [arXiv:1501.04257] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    C.-W. Chiang, A.-L. Kuo and T. Yamada, Searches of exotic Higgs bosons in general mass spectra of the Georgi-Machacek model at the LHC, JHEP 01 (2016) 120 [arXiv:1511.00865] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Degrande, K. Hartling, H.E. Logan, A.D. Peterson and M. Zaro, Automatic predictions in the Georgi-Machacek model at next-to-leading order accuracy, Phys. Rev. D 93 (2016) 035004 [arXiv:1512.01243] [INSPIRE].ADSGoogle Scholar
  23. [23]
    K. Hartling, K. Kumar and H.E. Logan, The decoupling limit in the Georgi-Machacek model, Phys. Rev. D 90 (2014) 015007 [arXiv:1404.2640] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Hartling, K. Kumar and H.E. Logan, Indirect constraints on the Georgi-Machacek model and implications for Higgs boson couplings, Phys. Rev. D 91 (2015) 015013 [arXiv:1410.5538] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H.E. Logan and V. Rentala, All the generalized Georgi-Machacek models, Phys. Rev. D 92 (2015) 075011 [arXiv:1502.01275] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Campbell, S. Godfrey, H.E. Logan and A. Poulin, Real singlet scalar dark matter extension of the Georgi-Machacek model, Phys. Rev. D 95 (2017) 016005 [arXiv:1610.08097] [INSPIRE].ADSGoogle Scholar
  27. [27]
    LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  28. [28]
    C. Degrande, K. Hartling and H.E. Logan, Scalar decays to γγ, Zγ and Wγ in the Georgi-Machacek model, Phys. Rev. D 96 (2017) 075013 [arXiv:1708.08753] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H.E. Logan and M.B. Reimer, Characterizing a benchmark scenario for heavy Higgs boson searches in the Georgi-Machacek model, Phys. Rev. D 96 (2017) 095029 [arXiv:1709.01883] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y. Zhang, H. Sun, X. Luo and W. Zhang, Searching for the heavy charged custodial fiveplet Higgs boson in the Georgi-Machacek model at the International Linear Collider, Phys. Rev. D 95 (2017) 115022 [arXiv:1706.01490] [INSPIRE].ADSGoogle Scholar
  31. [31]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    S. Chang and J.G. Wacker, Little Higgs and custodial SU(2), Phys. Rev. D 69 (2004) 035002 [hep-ph/0303001] [INSPIRE].
  34. [34]
    H.-C. Cheng and I. Low, TeV symmetry and the little hierarchy problem, JHEP 09 (2003) 051 [hep-ph/0308199] [INSPIRE].
  35. [35]
    H.-C. Cheng and I. Low, Little hierarchy, little Higgses and a little symmetry, JHEP 08 (2004) 061 [hep-ph/0405243] [INSPIRE].
  36. [36]
    I. Low, T parity and the littlest Higgs, JHEP 10 (2004) 067 [hep-ph/0409025] [INSPIRE].
  37. [37]
    L. Cort, M. Garcia and M. Quirós, Supersymmetric Custodial Triplets, Phys. Rev. D 88 (2013) 075010 [arXiv:1308.4025] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Garcia-Pepin, S. Gori, M. Quirós, R. Vega, R. Vega-Morales and T.-T. Yu, Supersymmetric Custodial Higgs Triplets and the Breaking of Universality, Phys. Rev. D 91 (2015) 015016 [arXiv:1409.5737] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Delgado, M. Garcia-Pepin and M. Quirós, GMSB with Light Stops, JHEP 08 (2015) 159 [arXiv:1505.07469] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Complementarity between Nonstandard Higgs Boson Searches and Precision Higgs Boson Measurements in the MSSM, Phys. Rev. D 91 (2015) 035003 [arXiv:1410.4969] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Carena, H.E. Haber, I. Low, N.R. Shah and C.E.M. Wagner, Alignment limit of the NMSSM Higgs sector, Phys. Rev. D 93 (2016) 035013 [arXiv:1510.09137] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M. Garcia-Pepin and M. Quirós, Strong electroweak phase transition from Supersymmetric Custodial Triplets, JHEP 05 (2016) 177 [arXiv:1602.01351] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Delgado, M. Garcia-Pepin, B. Ostdiek and M. Quirós, Dark Matter from the Supersymmetric Custodial Triplet Model, Phys. Rev. D 92 (2015) 015011 [arXiv:1504.02486] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R. Vega, R. Vega-Morales and K. Xie, work in progress.Google Scholar
  48. [48]
    Y. Chen, A. Falkowski, I. Low and R. Vega-Morales, New Observables for CP-violation in Higgs Decays, Phys. Rev. D 90 (2014) 113006 [arXiv:1405.6723] [INSPIRE].ADSGoogle Scholar
  49. [49]
    Y. Chen, D. Stolarski and R. Vega-Morales, Golden probe of the top Yukuwa coupling, Phys. Rev. D 92 (2015) 053003 [arXiv:1505.01168] [INSPIRE].ADSGoogle Scholar
  50. [50]
    Y. Chen, J. Lykken, M. Spiropulu, D. Stolarski and R. Vega-Morales, Golden Probe of Electroweak Symmetry Breaking, Phys. Rev. Lett. 117 (2016) 241801 [arXiv:1608.02159] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    D. Stolarski and R. Vega-Morales, Probing a Virtual Diphoton Excess, Phys. Rev. D 93 (2016) 055008 [arXiv:1601.02004] [INSPIRE].ADSGoogle Scholar
  52. [52]
    R. Vega-Morales, Diagnosing 2 + Y resonances at the LHC, arXiv:1710.02738 [INSPIRE].
  53. [53]
    J. Hubisz and P. Meade, Phenomenology of the littlest Higgs with T-parity, Phys. Rev. D 71 (2005) 035016 [hep-ph/0411264] [INSPIRE].
  54. [54]
    S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].
  55. [55]
    R. Vega and D.A. Dicus, Doubly Charged Higgs and W + W + Production, Nucl. Phys. B 329 (1990) 533 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    C. Englert, E. Re and M. Spannowsky, Pinning down Higgs triplets at the LHC, Phys. Rev. D 88 (2013) 035024 [arXiv:1306.6228] [INSPIRE].ADSGoogle Scholar
  57. [57]
    CMS collaboration, Study of vector boson scattering and search for new physics in events with two same-sign leptons and two jets, Phys. Rev. Lett. 114 (2015) 051801 [arXiv:1410.6315] [INSPIRE].
  58. [58]
    A. Delgado, M. Garcia-Pepin, M. Quirós, J. Santiago and R. Vega-Morales, Diphoton and Diboson Probes of Fermiophobic Higgs Bosons at the LHC, JHEP 06 (2016) 042 [arXiv:1603.00962] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F.S. Queiroz and W. Shepherd, New Physics Contributions to the Muon Anomalous Magnetic Moment: A Numerical Code, Phys. Rev. D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S. El Hedri, P.J. Fox and J.G. Wacker, Exploring the Dark Side of the Top Yukawa, arXiv:1311.6488 [INSPIRE].
  61. [61]
    J. Braathen, M.D. Goodsell and F. Staub, Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons, Eur. Phys. J. C 77 (2017) 757 [arXiv:1706.05372] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M.E. Krauss and F. Staub, Perturbativity Constraints in BSM Models, Eur. Phys. J. C 78 (2018) 185 [arXiv:1709.03501] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  64. [64]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  65. [65]
    F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].MathSciNetMATHGoogle Scholar
  66. [66]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  67. [67]
    M. Klasen, Calculating two and three-body decays with FeynArts and FormCalc, Int. J. Mod. Phys. C 14 (2003) 1273 [hep-ph/0210426] [INSPIRE].
  68. [68]
    S. Mrenna and J.D. Wells, Detecting a light Higgs boson at the Fermilab Tevatron through enhanced decays to photon pairs, Phys. Rev. D 63 (2001) 015006 [hep-ph/0001226] [INSPIRE].
  69. [69]
    G. Brooijmans et al., Les Houches 2015: Physics at TeV colliders — new physics working group report, in 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015), Les Houches, France, 1 – 19 June 2015 [arXiv:1605.02684] [INSPIRE].
  70. [70]
    A.G. Akeroyd, Fermiophobic Higgs bosons at the Tevatron, Phys. Lett. B 368 (1996) 89 [hep-ph/9511347] [INSPIRE].
  71. [71]
    A.G. Akeroyd, M.A. Diaz and F.J. Pacheco, Double fermiophobic Higgs boson production at the CERN LHC and LC, Phys. Rev. D 70 (2004) 075002 [hep-ph/0312231] [INSPIRE].
  72. [72]
    A.G. Akeroyd and M.A. Diaz, Searching for a light fermiophobic Higgs boson at the Tevatron, Phys. Rev. D 67 (2003) 095007 [hep-ph/0301203] [INSPIRE].
  73. [73]
    A.G. Akeroyd, A. Alves, M.A. Diaz and O.J.P. Eboli, Multi-photon signatures at the Fermilab Tevatron, Eur. Phys. J. C 48 (2006) 147 [hep-ph/0512077] [INSPIRE].
  74. [74]
    CDF collaboration, T.A. Aaltonen et al., Search for a Low-Mass Neutral Higgs Boson with Suppressed Couplings to Fermions Using Events with Multiphoton Final States, Phys. Rev. D 93 (2016) 112010 [arXiv:1601.00401] [INSPIRE].
  75. [75]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    K. Hartling, K. Kumar and H.E. Logan, GMCALC: a calculator for the Georgi-Machacek model, arXiv:1412.7387 [INSPIRE].
  77. [77]
    CMS collaboration, Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at \( \sqrt{s}=8 \) and 13 TeV, CMS-PAS-HIG-17-013 (2017).
  78. [78]
    A. Mariotti, D. Redigolo, F. Sala and K. Tobioka, New LHC bound on low-mass diphoton resonances, arXiv:1710.01743 [INSPIRE].
  79. [79]
    A. Crivellin, J. Heeck and D. Müller, Large hbs in generic two-Higgs-doublet models, Phys. Rev. D 97 (2018) 035008 [arXiv:1710.04663] [INSPIRE].ADSGoogle Scholar
  80. [80]
    P.J. Fox and N. Weiner, Light Signals from a Lighter Higgs, arXiv:1710.07649 [INSPIRE].
  81. [81]
    U. Haisch and A. Malinauskas, Let there be light from a second light Higgs doublet, arXiv:1712.06599 [INSPIRE].
  82. [82]
    S. Bahrami and M. Frank, Dark Matter in the Higgs Triplet Model, Phys. Rev. D 91 (2015) 075003 [arXiv:1502.02680] [INSPIRE].ADSGoogle Scholar
  83. [83]
    T.M.P. Tait and Z.-H. Yu, Triplet-Quadruplet Dark Matter, JHEP 03 (2016) 204 [arXiv:1601.01354] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    W.-B. Lu and P.-H. Gu, Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter, JCAP 05 (2016) 040 [arXiv:1603.05074] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    T. Pilkington, Dark matter in the Georgi-Machacek model with an additional inert doublet, arXiv:1711.04378 [INSPIRE].
  86. [86]
    A. Djouadi, J. Quevillon and R. Vega-Morales, Into the multi-TeV scale with a Higgs golden ratio, Phys. Lett. B 757 (2016) 412 [arXiv:1509.03913] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    M. Aoki and S. Kanemura, Unitarity bounds in the Higgs model including triplet fields with custodial symmetry, Phys. Rev. D 77 (2008) 095009 [Erratum ibid. D 77 (2008) 095009] [arXiv:0712.4053] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Roberto Vega
    • 1
  • Roberto Vega-Morales
    • 2
  • Keping Xie
    • 1
  1. 1.Department of PhysicsSouthern Methodist UniversityDallasU.S.A.
  2. 2.Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain

Personalised recommendations