Three-loop massive form factors: complete light-fermion corrections for the vector current

  • Roman N. Lee
  • Alexander V. Smirnov
  • Vladimir A. Smirnov
  • Matthias Steinhauser
Open Access
Regular Article - Theoretical Physics


We compute the three-loop QCD corrections to the massive quark-anti-quark-photon form factors F1 and F2 involving a closed loop of massless fermions. This subset is gauge invariant and contains both planar and non-planar contributions. We perform the reduction using FIRE and compute the master integrals with the help of differential equations. Our analytic results can be expressed in terms of Goncharov polylogarithms. We provide analytic results for all master integrals which are not present in the large-Nc calculation considered in refs. [1, 2].


NLO Computations QCD Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop integrals for massive form factors, JHEP 12 (2016) 144 [arXiv:1611.06523] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    J. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Massive three-loop form factor in the planar limit, JHEP 01 (2017) 074 [arXiv:1611.07535] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    J.M. Henn, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, A planar four-loop form factor and cusp anomalous dimension in QCD, JHEP 05 (2016) 066 [arXiv:1604.03126] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    J. Henn, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and R.N. Lee, Four-loop photon quark form factor and cusp anomalous dimension in the large-N c limit of QCD, JHEP 03 (2017) 139 [arXiv:1612.04389] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, The n f2 contributions to fermionic four-loop form factors, Phys. Rev. D 96 (2017) 014008 [arXiv:1705.06862] [INSPIRE].
  6. [6]
    A. von Manteuffel and R.M. Schabinger, Quark and gluon form factors to four-loop order in QCD: the n f3 contributions, Phys. Rev. D 95 (2017) 034030 [arXiv:1611.00795] [INSPIRE].
  7. [7]
    R.H. Boels, T. Huber and G. Yang, Four-Loop Nonplanar Cusp Anomalous Dimension in N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 119 (2017) 201601 [arXiv:1705.03444] [INSPIRE].
  8. [8]
    R.H. Boels, T. Huber and G. Yang, The nonplanar cusp and collinear anomalous dimension at four loops in \( \mathcal{N}=4 \) SYM theory, in 13th International Symposium on Radiative Corrections: Application of Quantum Field Theory to Phenomenology (RADCOR 2017), St. Gilgen, Austria, September 24-29, 2017 [arXiv:1712.07563] [INSPIRE].
  9. [9]
    W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: The Vector contributions, Nucl. Phys. B 706 (2005) 245 [hep-ph/0406046] [INSPIRE].
  10. [10]
    J. Gluza, A. Mitov, S. Moch and T. Riemann, The QCD form factor of heavy quarks at NNLO, JHEP 07 (2009) 001 [arXiv:0905.1137] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    T. Ahmed, J.M. Henn and M. Steinhauser, High energy behaviour of form factors, JHEP 06 (2017) 125 [arXiv:1704.07846] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J. Ablinger et al., The Heavy Quark Form Factors at Two Loops, arXiv:1712.09889 [INSPIRE].
  13. [13]
    A. Grozin, Heavy-quark form factors in the large β 0 limit, Eur. Phys. J. C 77 (2017) 453 [arXiv:1704.07968] [INSPIRE].
  14. [14]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].
  15. [15]
    R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].
  16. [16]
    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].
  17. [17]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  18. [18]
    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  21. [21]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  22. [22]
    A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
  25. [25]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
  26. [26]
    R. Harlander, T. Seidensticker and M. Steinhauser, Complete corrections of Order alpha α s to the decay of the Z boson into bottom quarks, Phys. Lett. B 426 (1998) 125 [hep-ph/9712228] [INSPIRE].
  27. [27]
    T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams, in 6th International Workshop on New Computing Techniques in Physics Research: Software Engineering, Artificial Intelligence Neural Nets, Genetic Algorithms, Symbolic Algebra, Automatic Calculation (AIHENP 99), Heraklion, Crete, Greece, April 12-16, 1999 [hep-ph/9905298] [INSPIRE].
  28. [28]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  31. [31]
    R.N. Lee and V.A. Smirnov, Analytic ϵ-expansions of Master Integrals Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up to Four-Loop Transcendentality Weight, JHEP 02 (2011) 102 [arXiv:1010.1334] [INSPIRE].
  32. [32]
    R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, TTP18-006-Three-loop massive form factors: complete light-fermion corrections for the vector current,
  33. [33]
    A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    A.G. Grozin, P. Marquard, J.H. Piclum and M. Steinhauser, Three-Loop Chromomagnetic Interaction in HQET, Nucl. Phys. B 789 (2008) 277 [arXiv:0707.1388] [INSPIRE].
  35. [35]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [INSPIRE].MathSciNetMATHGoogle Scholar
  36. [36]
    J. Frenkel and J.C. Taylor, Exponentiation of Leading Infrared Divergences in Massless Yang-Mills Theories, Nucl. Phys. B 116 (1976) 185 [INSPIRE].
  37. [37]
    A.A. Penin, High-Energy Limit of Quantum Electrodynamics beyond Sudakov Approximation, Phys. Lett. B 745 (2015) 69 [Erratum ibid. B 751 (2015) 596] [Erratum ibid. B 771 (2017) 633] [arXiv:1412.0671] [INSPIRE].
  38. [38]
    T. Liu, A.A. Penin and N. Zerf, Three-loop quark form factor at high energy: the leading mass corrections, Phys. Lett. B 771 (2017) 492 [arXiv:1705.07910] [INSPIRE].
  39. [39]
    T. Liu and A.A. Penin, High-Energy Limit of QCD beyond the Sudakov Approximation, Phys. Rev. Lett. 119 (2017) 262001 [arXiv:1709.01092] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Pineda and A. Signer, Heavy Quark Pair Production near Threshold with Potential Non-Relativistic QCD, Nucl. Phys. B 762 (2007) 67 [hep-ph/0607239] [INSPIRE].
  41. [41]
    A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy Quark Vacuum Polarization Function at \( \mathcal{O}\left({\alpha}_s^2\right) \) and \( \mathcal{O}\left({\alpha}_s^3\right) \), Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].
  42. [42]
    Y. Kiyo, A. Maier, P. Maierhöfer and P. Marquard, Reconstruction of heavy quark current correlators at O(α s3), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].
  43. [43]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [cs/0004015] [INSPIRE].
  44. [44]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  45. [45]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Solving differential equations for Feynman integrals by expansions near singular points, JHEP 03 (2018) 008 [arXiv:1709.07525] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    S. Pozzorini and E. Remiddi, Precise numerical evaluation of the two loop sunrise graph master integrals in the equal mass case, Comput. Phys. Commun. 175 (2006) 381 [hep-ph/0505041] [INSPIRE].
  47. [47]
    U. Aglietti, R. Bonciani, L. Grassi and E. Remiddi, The Two loop crossed ladder vertex diagram with two massive exchanges, Nucl. Phys. B 789 (2008) 45 [arXiv:0705.2616] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Roman N. Lee
    • 1
  • Alexander V. Smirnov
    • 2
  • Vladimir A. Smirnov
    • 3
    • 4
  • Matthias Steinhauser
    • 4
  1. 1.Budker Institute of Nuclear PhysicsNovosibirskRussia
  2. 2.Research Computing CenterMoscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia
  4. 4.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations