Resummed photon spectra for WIMP annihilation

Abstract

We construct an effective field theory (EFT) description of the hard photon spectrum for heavy WIMP annihilation. This facilitates precision predictions relevant for line searches, and allows the incorporation of non-trivial energy resolution effects. Our framework combines techniques from non-relativistic EFTs and soft-collinear effective theory (SCET), as well as its multi-scale extensions that have been recently introduced for studying jet substructure. We find a number of interesting features, including the simultaneous presence of SCETI and SCETII modes, as well as collinear-soft modes at the electroweak scale. We derive a factorization formula that enables both the resummation of the leading large Sudakov double logarithms that appear in the perturbative spectrum, and the inclusion of Sommerfeld enhancement effects. Consistency of this factorization is demonstrated to leading logarithmic order through explicit calculation. Our final result contains both the exclusive and the inclusive limits, thereby providing a unifying description of these two previously-considered approximations. We estimate the impact on experimental sensitivity, focusing for concreteness on an SU(2)W triplet fermion dark matter — the pure wino — where the strongest constraints are due to a search for gamma-ray lines from the Galactic Center. We find numerically significant corrections compared to previous results, thereby highlighting the importance of accounting for the photon spectrum when interpreting data from current and future indirect detection experiments.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J. Hisano, S. Matsumoto and M.M. Nojiri, Unitarity and higher order corrections in neutralino dark matter annihilation into two photons, Phys. Rev. D 67 (2003) 075014 [hep-ph/0212022] [INSPIRE].

  2. [2]

    J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].

  3. [3]

    J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

  4. [4]

    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

  5. [5]

    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

  8. [8]

    G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].

  9. [9]

    J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

  10. [10]

    A. Pierce, Dark matter in the finely tuned minimal supersymmetric standard model, Phys. Rev. D 70 (2004) 075006 [hep-ph/0406144] [INSPIRE].

  11. [11]

    A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].

  13. [13]

    L.J. Hall, Y. Nomura and S. Shirai, Spread Supersymmetry with Wino LSP: Gluino and Dark Matter Signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

  15. [15]

    M. Cirelli, R. Franceschini and A. Strumia, Minimal Dark Matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    M. Cirelli and A. Strumia, Minimal Dark Matter: Model and results, New J. Phys. 11 (2009) 105005 [arXiv:0903.3381] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    M. Cirelli, T. Hambye, P. Panci, F. Sala and M. Taoso, Gamma ray tests of Minimal Dark Matter, JCAP 10 (2015) 026 [arXiv:1507.05519] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M. Cirelli, F. Sala and M. Taoso, Wino-like Minimal Dark Matter and future colliders, JHEP 10 (2014) 033 [Erratum ibid. 01 (2015) 041] [arXiv:1407.7058] [INSPIRE].

  20. [20]

    R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett. 112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    J. Hisano, K. Ishiwata and N. Nagata, QCD Effects on Direct Detection of Wino Dark Matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    J. Fan and M. Reece, In Wino Veritas? Indirect Searches Shed Light on Neutralino Dark Matter, JHEP 10 (2013) 124 [arXiv:1307.4400] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    A. Cuoco, J. Heisig, M. Korsmeier and M. Krämer, Constraining heavy dark matter with cosmic-ray antiprotons, arXiv:1711.05274 [INSPIRE].

  26. [26]

    H.E.S.S. collaboration, A. Abramowski et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S, Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE].

  27. [27]

    H.E.S.S. collaboration, J.A. Hinton, The Status of the H.E.S.S. project, New Astron. Rev. 48 (2004) 331 [astro-ph/0403052] [INSPIRE].

  28. [28]

    H.E.S.S. collaboration, A. Abramowski et al., Search for Photon-Linelike Signatures from Dark Matter Annihilations with H.E.S.S., Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE].

  29. [29]

    G. Sinnis, A. Smith and J.E. McEnery, HAWC: A Next generation all-sky VHE gamma-ray telescope, in On recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories. Proceedings, 10th Marcel Grossmann Meeting, MG10, Rio de Janeiro, Brazil, July 20-26, 2003. Pt. A-C, pp. 1068-1088 (2004) [astro-ph/0403096] [INSPIRE].

  30. [30]

    HAWC collaboration, J.P. Harding and B. Dingus, Dark Matter Annihilation and Decay Searches with the High Altitude Water Cherenkov (HAWC) Observatory, PoS(ICRC2015)1227 [arXiv:1508.04352] [INSPIRE].

  31. [31]

    HAWC collaboration, J. Pretz, Highlights from the High Altitude Water Cherenkov Observatory, PoS(ICRC2015)025 [arXiv:1509.07851] [INSPIRE].

  32. [32]

    CTA Consortium collaboration, M. Actis et al., Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy, Exper. Astron. 32 (2011) 193 [arXiv:1008.3703] [INSPIRE].

  33. [33]

    T.C. Weekes et al., VERITAS: The Very energetic radiation imaging telescope array system, Astropart. Phys. 17 (2002) 221 [astro-ph/0108478] [INSPIRE].

  34. [34]

    VERITAS collaboration, J. Holder et al., The first VERITAS telescope, Astropart. Phys. 25 (2006) 391 [astro-ph/0604119] [INSPIRE].

  35. [35]

    VERITAS collaboration, A. Geringer-Sameth, The VERITAS Dark Matter Program, in Proceedings, 4th International Fermi Symposium, Monterey, California, U.S.A., October 28-November 2, 2012 (2013) [arXiv:1303.1406] [INSPIRE].

  36. [36]

    MAGIC collaboration, J. Flix Molina, Planned dark matter searches with the MAGIC Telescope, in Proceedings, 40th Rencontres de Moriond on Very High Energy Phenomena in the Universe, La Thuile, Italy, March 12-19, 2005, pp. 421-424 [astro-ph/0505313] [INSPIRE].

  37. [37]

    Fermi-LAT, MAGIC collaborations, M.L. Ahnen et al., Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies, JCAP 02 (2016) 039 [arXiv:1601.06590] [INSPIRE].

  38. [38]

    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    K. Blum, R. Sato and T.R. Slatyer, Self-consistent Calculation of the Sommerfeld Enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    A. Hryczuk and R. Iengo, The one-loop and Sommerfeld electroweak corrections to the Wino dark matter annihilation, JHEP 01 (2012) 163 [Erratum ibid. 06 (2012) 137] [arXiv:1111.2916] [INSPIRE].

  41. [41]

    M. Baumgart, I.Z. Rothstein and V. Vaidya, Calculating the Annihilation Rate of Weakly Interacting Massive Particles, Phys. Rev. Lett. 114 (2015) 211301 [arXiv:1409.4415] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    M. Bauer, T. Cohen, R.J. Hill and M.P. Solon, Soft Collinear Effective Theory for Heavy WIMP Annihilation, JHEP 01 (2015) 099 [arXiv:1409.7392] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    G. Ovanesyan, T.R. Slatyer and I.W. Stewart, Heavy Dark Matter Annihilation from Effective Field Theory, Phys. Rev. Lett. 114 (2015) 211302 [arXiv:1409.8294] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    M. Baumgart, I.Z. Rothstein and V. Vaidya, Constraints on Galactic Wino Densities from Gamma Ray Lines, JHEP 04 (2015) 106 [arXiv:1412.8698] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    M. Baumgart and V. Vaidya, Semi-inclusive wino and higgsino annihilation to LL, JHEP 03 (2016) 213 [arXiv:1510.02470] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    G. Ovanesyan, N.L. Rodd, T.R. Slatyer and I.W. Stewart, One-loop correction to heavy dark matter annihilation, Phys. Rev. D 95 (2017) 055001 [arXiv:1612.04814] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    J.F. Beacom, N.F. Bell and G. Bertone, Gamma-ray constraint on Galactic positron production by MeV dark matter, Phys. Rev. Lett. 94 (2005) 171301 [astro-ph/0409403] [INSPIRE].

  48. [48]

    A. Birkedal, K.T. Matchev, M. Perelstein and A. Spray, Robust gamma ray signature of WIMP dark matter, hep-ph/0507194 [INSPIRE].

  49. [49]

    L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, Gamma rays from Kaluza-Klein dark matter, Phys. Rev. Lett. 94 (2005) 131301 [astro-ph/0410359] [INSPIRE].

  50. [50]

    L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett. 95 (2005) 241301 [hep-ph/0507229] [INSPIRE].

  51. [51]

    T. Bringmann, L. Bergstrom and J. Edsjo, New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation, JHEP 01 (2008) 049 [arXiv:0710.3169] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

  53. [53]

    C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

  54. [54]

    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

  55. [55]

    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    A.J. Larkoski, I. Moult and D. Neill, Toward Multi-Differential Cross Sections: Measuring Two Angularities on a Single Jet, JHEP 09 (2014) 046 [arXiv:1401.4458] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    M. Procura, W.J. Waalewijn and L. Zeune, Resummation of Double-Differential Cross Sections and Fully-Unintegrated Parton Distribution Functions, JHEP 02 (2015) 117 [arXiv:1410.6483] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    P. Pietrulewicz, F.J. Tackmann and W.J. Waalewijn, Factorization and Resummation for Generic Hierarchies between Jets, JHEP 08 (2016) 002 [arXiv:1601.05088] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    M. Neubert, Analysis of the photon spectrum in inclusive BX s γ decays, Phys. Rev. D 49 (1994) 4623 [hep-ph/9312311] [INSPIRE].

  61. [61]

    Z. Ligeti, M.E. Luke, A.V. Manohar and M.B. Wise, The \( \overline{B}\to {X}_s\gamma \) photon spectrum, Phys. Rev. D 60 (1999) 034019 [hep-ph/9903305] [INSPIRE].

  62. [62]

    C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX s γ in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

  63. [63]

    M. Neubert, Renormalization-group improved calculation of the BX s γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [INSPIRE].

  64. [64]

    T. Becher and M. Neubert, Analysis of \( Br\left(\overline{B}\to {X}_s\gamma \right) \) at NNLO with a cut on photon energy, Phys. Rev. Lett. 98 (2007) 022003 [hep-ph/0610067] [INSPIRE].

  65. [65]

    I.I.Y. Bigi, M.A. Shifman, N.G. Uraltsev and A.I. Vainshtein, On the motion of heavy quarks inside hadrons: Universal distributions and inclusive decays, Int. J. Mod. Phys. A 9 (1994) 2467 [hep-ph/9312359] [INSPIRE].

  66. [66]

    T. Mannel and M. Neubert, Resummation of nonperturbative corrections to the lepton spectrum in inclusive \( B\to {X}_ql\overline{\nu} \) decays, Phys. Rev. D 50 (1994) 2037 [hep-ph/9402288] [INSPIRE].

  67. [67]

    K.G. Wilson, Nonlagrangian models of current algebra, Phys. Rev. 179 (1969) 1499 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  68. [68]

    G.P. Korchemsky and G.F. Sterman, Infrared factorization in inclusive B meson decays, Phys. Lett. B 340 (1994) 96 [hep-ph/9407344] [INSPIRE].

  69. [69]

    G.P. Salam and D. Wicke, Hadron masses and power corrections to event shapes, JHEP 05 (2001) 061 [hep-ph/0102343] [INSPIRE].

  70. [70]

    V. Mateu, I.W. Stewart and J. Thaler, Power Corrections to Event Shapes with Mass-Dependent Operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].

  72. [72]

    J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Corrections in High Energy Processes using Effective Field Theory, Phys. Rev. D 77 (2008) 053004 [arXiv:0712.0396] [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    J.-y. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett. 100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    J.-y. Chiu, R. Kelley and A.V. Manohar, Electroweak Corrections using Effective Field Theory: Applications to the LHC, Phys. Rev. D 78 (2008) 073006 [arXiv:0806.1240] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Soft and Collinear Functions for the Standard Model, Phys. Rev. D 81 (2010) 014023 [arXiv:0909.0947] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    A. Fuhrer, A.V. Manohar, J.-y. Chiu and R. Kelley, Radiative Corrections to Longitudinal and Transverse Gauge Boson and Higgs Production, Phys. Rev. D 81 (2010) 093005 [arXiv:1003.0025] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination, JHEP 05 (2016) 117 [arXiv:1507.03018] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination at the Large Hadron Collider, arXiv:1708.06760 [INSPIRE].

  80. [80]

    A.J. Larkoski, I. Moult and D. Neill, Factorization and Resummation for Groomed Multi-Prong Jet Shapes, JHEP 02 (2018) 144 [arXiv:1710.00014] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    W.E. Caswell and G.P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD and Other Field Theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

    ADS  Article  Google Scholar 

  82. [82]

    G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].

  83. [83]

    M.E. Luke, A.V. Manohar and I.Z. Rothstein, Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D 61 (2000) 074025 [hep-ph/9910209] [INSPIRE].

  84. [84]

    I.Z. Rothstein, NRQCD: A Critical review, hep-ph/9911276 [INSPIRE].

  85. [85]

    I.Z. Rothstein, TASI lectures on effective field theories, hep-ph/0308266 [INSPIRE].

  86. [86]

    A.H. Hoang, Heavy quarkonium dynamics, hep-ph/0204299 [INSPIRE].

  87. [87]

    J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320] [INSPIRE].

  90. [90]

    A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1.

    Google Scholar 

  91. [91]

    M.E. Luke and A.V. Manohar, Reparametrization invariance constraints on heavy particle effective field theories, Phys. Lett. B 286 (1992) 348 [hep-ph/9205228] [INSPIRE].

  92. [92]

    J. Heinonen, R.J. Hill and M.P. Solon, Lorentz invariance in heavy particle effective theories, Phys. Rev. D 86 (2012) 094020 [arXiv:1208.0601] [INSPIRE].

    ADS  Google Scholar 

  93. [93]

    A.V. Manohar and I.W. Stewart, Renormalization group analysis of the QCD quark potential to order v 2, Phys. Rev. D 62 (2000) 014033 [hep-ph/9912226] [INSPIRE].

  94. [94]

    A.V. Manohar and I.W. Stewart, The QCD heavy quark potential to order v**2: One loop matching conditions, Phys. Rev. D 62 (2000) 074015 [hep-ph/0003032] [INSPIRE].

  95. [95]

    M. Ibe, S. Matsumoto and R. Sato, Mass Splitting between Charged and Neutral Winos at Two-Loop Level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].

    ADS  Article  Google Scholar 

  96. [96]

    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos I. General framework and S-wave annihilation, JHEP 03 (2013) 148 [Erratum ibid. 10 (2013) 224] [arXiv:1210.7928] [INSPIRE].

  97. [97]

    M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].

  98. [98]

    M. Beneke et al., Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119 [arXiv:1601.04718] [INSPIRE].

    ADS  Article  Google Scholar 

  99. [99]

    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part II. Coulomb resummation, JHEP 02 (2018) 150 [arXiv:1708.07155] [INSPIRE].

  100. [100]

    E. Braaten, E. Johnson and H. Zhang, Zero-range effective field theory for resonant wino dark matter. Part I. Framework, JHEP 11 (2017) 108 [arXiv:1706.02253] [INSPIRE].

  101. [101]

    A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett. B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].

  102. [102]

    J. Chay and C. Kim, Collinear effective theory at subleading order and its application to heavy - light currents, Phys. Rev. D 65 (2002) 114016 [hep-ph/0201197] [INSPIRE].

  103. [103]

    C.W. Bauer, D. Pirjol and I.W. Stewart, Factorization and endpoint singularities in heavy to light decays, Phys. Rev. D 67 (2003) 071502 [hep-ph/0211069] [INSPIRE].

  104. [104]

    I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  105. [105]

    I. Moult, M.P. Solon, I.W. Stewart and G. Vita, Fermionic Glauber Operators and Quark Reggeization, JHEP 02 (2018) 134 [arXiv:1709.09174] [INSPIRE].

    ADS  Article  Google Scholar 

  106. [106]

    A.V. Manohar and I.W. Stewart, The Zero-Bin and Mode Factorization in Quantum Field Theory, Phys. Rev. D 76 (2007) 074002 [hep-ph/0605001] [INSPIRE].

  107. [107]

    M. Beneke and T. Feldmann, Multipole expanded soft collinear effective theory with nonAbelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358] [INSPIRE].

  108. [108]

    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].

  109. [109]

    J. Chay, C. Kim, Y.G. Kim and J.-P. Lee, Soft Wilson lines in soft-collinear effective theory, Phys. Rev. D 71 (2005) 056001 [hep-ph/0412110] [INSPIRE].

  110. [110]

    C.M. Arnesen, J. Kundu and I.W. Stewart, Constraint equations for heavy-to-light currents in SCET, Phys. Rev. D 72 (2005) 114002 [hep-ph/0508214] [INSPIRE].

  111. [111]

    C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

  112. [112]

    T. Becher and G. Bell, Analytic Regularization in Soft-Collinear Effective Theory, Phys. Lett. B 713 (2012) 41 [arXiv:1112.3907] [INSPIRE].

    ADS  Article  Google Scholar 

  113. [113]

    J.-y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, The Rapidity Renormalization Group, Phys. Rev. Lett. 108 (2012) 151601 [arXiv:1104.0881] [INSPIRE].

    ADS  Article  Google Scholar 

  114. [114]

    J.-Y. Chiu, A. Jain, D. Neill and I.Z. Rothstein, A Formalism for the Systematic Treatment of Rapidity Logarithms in Quantum Field Theory, JHEP 05 (2012) 084 [arXiv:1202.0814] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  115. [115]

    A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Dark Matter as a weakly coupled Dark Baryon, JHEP 10 (2017) 210 [arXiv:1707.05380] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  116. [116]

    C.W. Bauer and N. Ferland, Resummation of electroweak Sudakov logarithms for real radiation, JHEP 09 (2016) 025 [arXiv:1601.07190] [INSPIRE].

    ADS  Article  Google Scholar 

  117. [117]

    J. Chen, T. Han and B. Tweedie, Electroweak Splitting Functions and High Energy Showering, JHEP 11 (2017) 093 [arXiv:1611.00788] [INSPIRE].

    ADS  Article  Google Scholar 

  118. [118]

    N.A. Sveshnikov and F.V. Tkachov, Jets and quantum field theory, Phys. Lett. B 382 (1996) 403 [hep-ph/9512370] [INSPIRE].

  119. [119]

    G.P. Korchemsky, G. Oderda and G.F. Sterman, Power corrections and nonlocal operators, AIP Conf. Proc. 407 (1997) 988 [hep-ph/9708346] [INSPIRE].

  120. [120]

    C. Lee and G.F. Sterman, Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory, Phys. Rev. D 75 (2007) 014022 [hep-ph/0611061] [INSPIRE].

  121. [121]

    I.W. Stewart and C.W. Bauer, Lectures on the soft-collinear effective theory, http://ocw.mit.edu/courses/physics/8-851-effective-field-theory-spring-2013/lecture-notes/ MIT8_851S13_scetnotes.pdf.

  122. [122]

    F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  123. [123]

    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  124. [124]

    T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  125. [125]

    P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].

  126. [126]

    P. Ciafaloni and D. Comelli, Electroweak Sudakov form-factors and nonfactorizable soft QED effects at NLC energies, Phys. Lett. B 476 (2000) 49 [hep-ph/9910278] [INSPIRE].

  127. [127]

    M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].

  128. [128]

    E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    ADS  Article  Google Scholar 

  129. [129]

    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

  130. [130]

    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].

  131. [131]

    S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, JHEP 03 (2018) 036 [arXiv:1501.03754] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  132. [132]

    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].

    ADS  Article  Google Scholar 

  133. [133]

    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Factorization and Resummation for Jet Processes, JHEP 11 (2016) 019 [Erratum ibid. 05 (2017) 154] [arXiv:1605.02737] [INSPIRE].

  134. [134]

    A.J. Larkoski, I. Moult and D. Neill, The Analytic Structure of Non-Global Logarithms: Convergence of the Dressed Gluon Expansion, JHEP 11 (2016) 089 [arXiv:1609.04011] [INSPIRE].

    ADS  Article  Google Scholar 

  135. [135]

    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for α s(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

    ADS  Google Scholar 

  136. [136]

    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson Loops Beyond the Leading Order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    ADS  Article  Google Scholar 

  137. [137]

    G. Bell, J.H. Kuhn and J. Rittinger, Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region, Eur. Phys. J. C 70 (2010) 659 [arXiv:1004.4117] [INSPIRE].

    ADS  Article  Google Scholar 

  138. [138]

    A. Manohar, B. Shotwell, C. Bauer and S. Turczyk, Non-cancellation of electroweak logarithms in high-energy scattering, Phys. Lett. B 740 (2015) 179 [arXiv:1409.1918] [INSPIRE].

    ADS  Article  Google Scholar 

  139. [139]

    H.E.S.S. collaboration, L. Rinchiuso, E. Moulin, A. Viana, C. Van Eldik and J. Veh, Dark matter gamma-ray line searches toward the Galactic Center halo with H.E.S.S. I, PoS(ICRC2017)893 [arXiv:1708.08358] [INSPIRE].

  140. [140]

    H.E.S.S. collaboration, L. Rinchiuso and E. Moulin, Dark matter searches toward the Galactic Centre halo with H.E.S.S, in Proceedings, 52nd Rencontres de Moriond on Very High Energy Phenomena in the Universe, La Thuile, Italy, March 18-25, 2017, pp. 255-262 [arXiv:1711.08634] [INSPIRE].

  141. [141]

    V. Lefranc, E. Moulin, P. Panci, F. Sala and J. Silk, Dark Matter in γ lines: Galactic Center vs dwarf galaxies, JCAP 09 (2016) 043 [arXiv:1608.00786] [INSPIRE].

    ADS  Article  Google Scholar 

  142. [142]

    M. Lisanti, S. Mishra-Sharma, N.L. Rodd, B.R. Safdi and R.H. Wechsler, Mapping Extragalactic Dark Matter Annihilation with Galaxy Surveys: A Systematic Study of Stacked Group Searches, Phys. Rev. D 97 (2018) 063005 [arXiv:1709.00416] [INSPIRE].

    ADS  Google Scholar 

  143. [143]

    M. Pato and F. Iocco, The Dark Matter Profile of the Milky Way: a Non-parametric Reconstruction, Astrophys. J. 803 (2015) L3 [arXiv:1504.03317] [INSPIRE].

    ADS  Article  Google Scholar 

  144. [144]

    L. Pieri, J. Lavalle, G. Bertone and E. Branchini, Implications of High-Resolution Simulations on Indirect Dark Matter Searches, Phys. Rev. D 83 (2011) 023518 [arXiv:0908.0195] [INSPIRE].

    ADS  Google Scholar 

  145. [145]

    J.F. Navarro, C.S. Frenk and S.D.M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

  146. [146]

    W.A. Rolke, A.M. Lopez and J. Conrad, Limits and confidence intervals in the presence of nuisance parameters, Nucl. Instrum. Meth. A 551 (2005) 493 [physics/0403059] [INSPIRE].

  147. [147]

    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  148. [148]

    T.K. Chan et al., The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations, Mon. Not. Roy. Astron. Soc. 454 (2015) 2981 [arXiv:1507.02282] [INSPIRE].

    ADS  Article  Google Scholar 

  149. [149]

    M. Portail, C. Wegg, O. Gerhard and I. Martinez-Valpuesta, Made-to-measure models of the Galactic box/peanut bulge: stellar and total mass in the bulge region, Mon. Not. Roy. Astron. Soc. 448 (2015) 713 [arXiv:1502.00633].

    ADS  Article  Google Scholar 

  150. [150]

    D. Hooper, The Density of Dark Matter in the Galactic Bulge and Implications for Indirect Detection, Phys. Dark Univ. 15 (2017) 53 [arXiv:1608.00003] [INSPIRE].

    Article  Google Scholar 

  151. [151]

    M. Beneke, A. Bharucha, A. Hryczuk, S. Recksiegel and P. Ruiz-Femenia, The last refuge of mixed wino-Higgsino dark matter, JHEP 01 (2017) 002 [arXiv:1611.00804] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  152. [152]

    R. Krall and M. Reece, Last Electroweak WIMP Standing: Pseudo-Dirac Higgsino Status and Compact Stars as Future Probes, arXiv:1705.04843 [INSPIRE].

  153. [153]

    C.W. Bauer and A.V. Manohar, Shape function effects in BX s γ and \( B\to {X}_ul\overline{\nu} \) decays, Phys. Rev. D 70 (2004) 034024 [hep-ph/0312109] [INSPIRE].

  154. [154]

    S.W. Bosch, B.O. Lange, M. Neubert and G. Paz, Factorization and shape function effects in inclusive B meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [INSPIRE].

  155. [155]

    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X}_s\gamma \) decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].

  156. [156]

    Z. Ligeti, I.W. Stewart and F.J. Tackmann, Treating the b quark distribution function with reliable uncertainties, Phys. Rev. D 78 (2008) 114014 [arXiv:0807.1926] [INSPIRE].

    ADS  Google Scholar 

  157. [157]

    J.-y. Chiu, A. Fuhrer, A.H. Hoang, R. Kelley and A.V. Manohar, Soft-Collinear Factorization and Zero-Bin Subtractions, Phys. Rev. D 79 (2009) 053007 [arXiv:0901.1332] [INSPIRE].

    ADS  Google Scholar 

  158. [158]

    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].

  159. [159]

    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak Corrections are Relevant for Dark Matter Indirect Detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].

    ADS  Article  Google Scholar 

  160. [160]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  161. [161]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  162. [162]

    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  163. [163]

    J.R. Christiansen and T. Sjöstrand, Weak Gauge Boson Radiation in Parton Showers, JHEP 04 (2014) 115 [arXiv:1401.5238] [INSPIRE].

    ADS  Article  Google Scholar 

  164. [164]

    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

  165. [165]

    DES, Fermi-LAT collaborations, A. Albert et al., Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  166. [166]

    M. Lisanti, S. Mishra-Sharma, N.L. Rodd and B.R. Safdi, Search for Dark Matter Annihilation in Galaxy Groups, Phys. Rev. Lett. 120 (2018) 101101 [arXiv:1708.09385] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas L. Rodd.

Additional information

ArXiv ePrint: 1712.07656

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baumgart, M., Cohen, T., Moult, I. et al. Resummed photon spectra for WIMP annihilation. J. High Energ. Phys. 2018, 117 (2018). https://doi.org/10.1007/JHEP03(2018)117

Download citation

Keywords

  • Jets
  • Phenomenological Models