Advertisement

The light bound states of \( \mathcal{N}=1 \) supersymmetric SU(3) Yang-Mills theory on the lattice

  • Sajid Ali
  • Georg Bergner
  • Henning Gerber
  • Pietro Giudice
  • Istvan Montvay
  • Gernot Münster
  • Stefano Piemonte
  • Philipp Scior
Open Access
Regular Article - Theoretical Physics

Abstract

In this article we summarise our results from numerical simulations of \( \mathcal{N}=1 \) supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.

Keywords

Lattice Quantum Field Theory Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Bergner and S. Catterall, Supersymmetry on the lattice, Int. J. Mod. Phys. A 31 (2016) 1643005 [arXiv:1603.04478] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    G. Veneziano and S. Yankielowicz, An effective Lagrangian for the pure N = 1 supersymmetric Yang-Mills theory, Phys. Lett. B 113 (1982) 231 [INSPIRE].
  3. [3]
    G.R. Farrar, G. Gabadadze and M. Schwetz, On the effective action of N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 58 (1998) 015009 [hep-th/9711166] [INSPIRE].
  4. [4]
    G.R. Farrar, G. Gabadadze and M. Schwetz, The spectrum of softly broken N = 1 supersymmetric Yang-Mills theory, Phys. Rev. D 60 (1999) 035002 [hep-th/9806204] [INSPIRE].
  5. [5]
    T.J. Hollowood, V.V. Khoze, W.-J. Lee and M.P. Mattis, Breakdown of cluster decomposition in instanton calculations of the gluino condensate, Nucl. Phys. B 570 (2000) 241 [hep-th/9904116] [INSPIRE].
  6. [6]
    G. Bergner, P. Giudice, G. Münster, I. Montvay and S. Piemonte, The light bound states of supersymmetric SU(2) Yang-Mills theory, JHEP 03 (2016) 080 [arXiv:1512.07014] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    S. Ali et al., Supermultiplets in N = 1 SUSY SU(2) Yang-Mills theory, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1710.07464] [INSPIRE].
  8. [8]
    DESY-Munster collaboration, A. Feo, R. Kirchner, S. Luckmann, I. Montvay and G. Münster, Numerical simulations of dynamical gluinos in SU(3) Yang-Mills theory: first results, Nucl. Phys. Proc. Suppl. 83 (2000) 661 [hep-lat/9909070] [INSPIRE].
  9. [9]
    S. Ali et al., Simulations of N = 1 supersymmetric Yang-Mills theory with three colours, PoS(LATTICE2016)222 [arXiv:1610.10097] [INSPIRE].
  10. [10]
    S. Ali et al., Improved results for the mass spectrum of N = 1 supersymmetric SU(3) Yang-Mills theory, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1710.07105] [INSPIRE].
  11. [11]
    M. Steinhauser, A. Sternbeck, B. Wellegehausen and A. Wipf, Spectroscopy of four-dimensional N = 1 supersymmetric SU(3) Yang-Mills theory, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1711.05086] [INSPIRE].
  12. [12]
    G. Curci and G. Veneziano, Supersymmetry and the lattice: a reconciliation?, Nucl. Phys. B 292 (1987) 555 [INSPIRE].
  13. [13]
    D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Nonperturbative aspects in supersymmetric gauge theories, Phys. Rept. 162 (1988) 169 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S. Musberg, G. Münster and S. Piemonte, Perturbative calculation of the clover term for Wilson fermions in any representation of the gauge group SU(N), JHEP 05 (2013) 143 [arXiv:1304.5741] [INSPIRE].
  15. [15]
    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [Erratum ibid. 03 (2014) 092] [arXiv:1006.4518] [INSPIRE].
  16. [16]
    S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010 [arXiv:1203.4469] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Bergner, P. Giudice, I. Montvay, G. Münster and S. Piemonte, Influence of topology on the scale setting, Eur. Phys. J. Plus 130 (2015) 229 [arXiv:1411.6995] [INSPIRE].CrossRefMATHGoogle Scholar
  18. [18]
    G. Münster and H. Stüwe, The mass of the adjoint pion in N = 1 supersymmetric Yang-Mills theory, JHEP 05 (2014) 034 [arXiv:1402.6616] [INSPIRE].
  19. [19]
    DESY-Munster-Roma collaboration, F. Farchioni et al., The supersymmetric Ward identities on the lattice, Eur. Phys. J. C 23 (2002) 719 [hep-lat/0111008] [INSPIRE].
  20. [20]
    S. Ali et al., Analysis of Ward identities in supersymmetric Yang-Mills theory, arXiv:1802.07067 [INSPIRE].
  21. [21]
    S. Ali et al., Ward identities in N = 1 supersymmetric SU(3) Yang-Mills theory on the lattice, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1711.05504] [INSPIRE].
  22. [22]
    S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte and P. Scior, in preparation.Google Scholar
  23. [23]
    G. Bergner, G. Münster, D. Sandbrink, U.D. Özugurel and I. Montvay, Supersymmetric Yang-Mills theory: a step towards the continuum, in Proceedings, 29th International Symposium on Lattice field theory (Lattice 2011), Squaw Valley Lake Tahoe U.S.A., 10-16 July 2011 [arXiv:1111.3012] [INSPIRE].
  24. [24]
    JLQCD collaboration, H. Fukaya, S. Aoki, G. Cossu, S. Hashimoto, T. Kaneko and J. Noaki, η meson mass from topological charge density correlator in QCD, Phys. Rev. D 92 (2015) 111501 [arXiv:1509.00944] [INSPIRE].
  25. [25]
    G. Bergner and J. Wuilloud, Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator, Comput. Phys. Commun. 183 (2012) 299 [arXiv:1104.1363] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    G. Bergner, T. Berheide, G. Münster, U.D. Özugurel, D. Sandbrink and I. Montvay, The gluino-glue particle and finite size effects in supersymmetric Yang-Mills theory, JHEP 09 (2012) 108 [arXiv:1206.2341] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sajid Ali
    • 1
  • Georg Bergner
    • 2
    • 1
  • Henning Gerber
    • 1
  • Pietro Giudice
    • 1
  • Istvan Montvay
    • 3
  • Gernot Münster
    • 1
  • Stefano Piemonte
    • 4
  • Philipp Scior
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of MünsterMünsterGermany
  2. 2.Institute for Theoretical PhysicsUniversity of JenaJenaGermany
  3. 3.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  4. 4.Institute for Theoretical PhysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations