Advertisement

Extremal black hole horizons

  • Jay ArmasEmail author
  • Troels Harmark
  • Niels A. Obers
Open Access
Regular Article - Theoretical Physics

Abstract

Using the blackfold effective theory applied to extremal Kerr branes we provide evidence for the existence of new stationary extremal black hole solutions in asymptotically flat spacetime with both single and multiple disconnected horizons. These include extremal doubly-spinning black rings, black saturns, di-rings and bi-rings in five spacetime dimensions as well as extremal Myers-Perry black holes and black saturns in dimensions greater than five. Some of these constructions constitute the first examples of black hole solutions with extremal disconnected horizons in vacuum Einstein gravity.

Keywords

Black Holes Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A.A. Pomeransky and R.A. Sen’kov, Black ring with two angular momenta, hep-th/0612005 [INSPIRE].
  5. [5]
    R. Emparan, T. Harmark, V. Niarchos, N.A. Obers and M.J. Rodriguez, The Phase Structure of Higher-Dimensional Black Rings and Black Holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    H. Elvang and P. Figueras, Black Saturn, JHEP 05 (2007) 050 [hep-th/0701035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Evslin and C. Krishnan, The Black Di-Ring: An Inverse Scattering Construction, Class. Quant. Grav. 26 (2009) 125018 [arXiv:0706.1231] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. Iguchi and T. Mishima, Black di-ring and infinite nonuniqueness, Phys. Rev. D 75 (2007) 064018 [Erratum ibid. D 78 (2008) 069903] [hep-th/0701043] [INSPIRE].
  9. [9]
    H. Elvang and M.J. Rodriguez, Bicycling Black Rings, JHEP 04 (2008) 045 [arXiv:0712.2425] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    K. Izumi, Orthogonal black di-ring solution, Prog. Theor. Phys. 119 (2008) 757 [arXiv:0712.0902] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Figueras, H.K. Kunduri, J. Lucietti and M. Rangamani, Extremal vacuum black holes in higher dimensions, Phys. Rev. D 78 (2008) 044042 [arXiv:0803.2998] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-Volume Effective Theory for Higher-Dimensional Black Holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New Horizons for Black Holes and Branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    B. Kleihaus, J. Kunz and E. Radu, Black rings in six dimensions, Phys. Lett. B 718 (2013) 1073 [arXiv:1205.5437] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    Ó.J.C. Dias, J.E. Santos and B. Way, Rings, Ripples and Rotation: Connecting Black Holes to Black Rings, JHEP 07 (2014) 045 [arXiv:1402.6345] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B. Kleihaus, J. Kunz and E. Radu, Black ringoids: spinning balanced black objects in d ≥ 5 dimensions — the codimension-two case, JHEP 01 (2015) 117 [arXiv:1410.0581] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Emparan, P. Figueras and M. Martinez, Bumpy black holes, JHEP 12 (2014) 072 [arXiv:1410.4764] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    P. Figueras, M. Kunesch and S. Tunyasuvunakool, End Point of Black Ring Instabilities and the Weak Cosmic Censorship Conjecture, Phys. Rev. Lett. 116 (2016) 071102 [arXiv:1512.04532] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Armas and M. Blau, Blackfolds, Plane Waves and Minimal Surfaces, JHEP 07 (2015) 156 [arXiv:1503.08834] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Armas and M. Blau, New Geometries for Black Hole Horizons, JHEP 07 (2015) 048 [arXiv:1504.01393] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Figueras, M. Kunesch, L. Lehner and S. Tunyasuvunakool, End Point of the Ultraspinning Instability and Violation of Cosmic Censorship, Phys. Rev. Lett. 118 (2017) 151103 [arXiv:1702.01755] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Harmark, V. Niarchos and N.A. Obers, Instabilities of black strings and branes, Class. Quant. Grav. 24 (2007) R1 [hep-th/0701022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G.T. Horowitz ed., Black holes in higher dimensions, Cambridge University Press, Cambridge, U.K. (2012).zbMATHGoogle Scholar
  25. [25]
    T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D 70 (2004) 124002 [hep-th/0408141] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    T. Harmark and P. Olesen, On the structure of stationary and axisymmetric metrics, Phys. Rev. D 72 (2005) 124017 [hep-th/0508208] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2011).Google Scholar
  28. [28]
    G.J. Galloway and R. Schoen, A Generalization of Hawking’s black hole topology theorem to higher dimensions, Commun. Math. Phys. 266 (2006) 571 [gr-qc/0509107] [INSPIRE].
  29. [29]
    G.J. Galloway, Constraints on the topology of higher dimensional black holes, arXiv:1111.5356 [INSPIRE].
  30. [30]
    M. Eckstein, Degenerating Black Saturns, JHEP 11 (2013) 078 [arXiv:1309.4414] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young Modulus of Black Strings and the Fine Structure of Blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    J. Armas, How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes, JHEP 09 (2013) 073 [arXiv:1304.7773] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Armas and T. Harmark, Constraints on the effective fluid theory of stationary branes, JHEP 10 (2014) 063 [arXiv:1406.7813] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Armas, T. Harmark and N.A. Obers, Black holes with disconnected horizons, to appear.Google Scholar
  35. [35]
    J. Armas and J. Tarrio, On actions for (entangling) surfaces and DCFTs, arXiv:1709.06766 [INSPIRE].
  36. [36]
    J. Armas, N.A. Obers and M. Sanchioni, Gravitational Tension, Spacetime Pressure and Black Hole Volume, JHEP 09 (2016) 124 [arXiv:1512.09106] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    H. Elvang, R. Emparan and P. Figueras, Phases of five-dimensional black holes, JHEP 05 (2007) 056 [hep-th/0702111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Durkee, Geodesics and Symmetries of Doubly-Spinning Black Rings, Class. Quant. Grav. 26 (2009) 085016 [arXiv:0812.0235] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    R. Emparan and H.S. Reall, Black Rings, Class. Quant. Grav. 23 (2006) R169 [hep-th/0608012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    R. Emparan and P. Figueras, Multi-black rings and the phase diagram of higher-dimensional black holes, JHEP 11 (2010) 022 [arXiv:1008.3243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22 (2005) 1503 [hep-th/0408217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    M. Khuri and E. Woolgar, Nonexistence of Degenerate Horizons in Static Vacua and Black Hole Uniqueness, Phys. Lett. B 777 (2018) 235 [arXiv:1710.09669] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    H.K. Kunduri and J. Lucietti, A Classification of near-horizon geometries of extremal vacuum black holes, J. Math. Phys. 50 (2009) 082502 [arXiv:0806.2051] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Rel. 16 (2013) 8 [arXiv:1306.2517] [INSPIRE].CrossRefzbMATHGoogle Scholar
  45. [45]
    S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    P. Figueras and J. Lucietti, On the uniqueness of extremal vacuum black holes, Class. Quant. Grav. 27 (2010) 095001 [arXiv:0906.5565] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    J. Armas and N.A. Obers, Blackfolds in (Anti)-de Sitter Backgrounds, Phys. Rev. D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Khuri and E. Woolgar, Nonexistence of Extremal de Sitter Black Rings, Class. Quant. Grav. 34 (2017) 22LT01 [arXiv:1708.03627] [INSPIRE].
  49. [49]
    J. Camps and R. Emparan, Derivation of the blackfold effective theory, JHEP 03 (2012) 038 [Erratum ibid. 06 (2012) 155] [arXiv:1201.3506] [INSPIRE].
  50. [50]
    J. Armas, (Non)-Dissipative Hydrodynamics on Embedded Surfaces, JHEP 09 (2014) 047 [arXiv:1312.0597] [INSPIRE].
  51. [51]
    J. Armas and T. Harmark, Black Holes and Biophysical (Mem)-branes, Phys. Rev. D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Armas, J. Gath and N.A. Obers, Black Branes as Piezoelectrics, Phys. Rev. Lett. 109 (2012) 241101 [arXiv:1209.2127] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Armas, J. Gath and N.A. Obers, Electroelasticity of Charged Black Branes, JHEP 10 (2013) 035 [arXiv:1307.0504] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in Supergravity and String Theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional Rotating Charged Black Holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    G. Grignani, T. Harmark, A. Marini, N.A. Obers and M. Orselli, Heating up the BIon, JHEP 06 (2011) 058 [arXiv:1012.1494] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    J. Armas, J. Gath, V. Niarchos, N.A. Obers and A.V. Pedersen, Forced Fluid Dynamics from Blackfolds in General Supergravity Backgrounds, JHEP 10 (2016) 154 [arXiv:1606.09644] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Université Libre de Bruxelles (ULB) and International Solvay Institutes, Service de Physique Théorique et MathématiqueBrusselsBelgium
  2. 2.The Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark

Personalised recommendations