Advertisement

Nonequilibrium dynamics of the O(N ) model on dS3 and AdS crunches

  • S. Prem Kumar
  • Vladislav Vaganov
Open Access
Regular Article - Theoretical Physics

Abstract

We study the nonperturbative quantum evolution of the interacting O(N ) vector model at large-N , formulated on a spatial two-sphere, with time dependent couplings which diverge at finite time. This model - the so-called “E-frame” theory, is related via a conformal transformation to the interacting O(N ) model in three dimensional global de Sitter spacetime with time independent couplings. We show that with a purely quartic, relevant deformation the quantum evolution of the E-frame model is regular even when the classical theory is rendered singular at the end of time by the diverging coupling. Time evolution drives the E-frame theory to the large-N Wilson-Fisher fixed point when the classical coupling diverges. We study the quantum evolution numerically for a variety of initial conditions and demonstrate the finiteness of the energy at the classical “end of time”. With an additional (time dependent) mass deformation, quantum backreaction lowers the mass, with a putative smooth time evolution only possible in the limit of infinite quartic coupling. We discuss the relevance of these results for the resolution of crunch singularities in AdS geometries dual to E-frame theories with a classical gravity dual.

Keywords

Field Theories in Lower Dimensions Nonperturbative Effects AdS-CFT Correspondence Spacetime Singularities 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP 07 (2004) 073 [hep-th/0406134] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Hertog and G.T. Horowitz, Holographic description of AdS cosmologies, JHEP 04 (2005) 005 [hep-th/0503071] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    N. Turok, B. Craps and T. Hertog, From big crunch to big bang with AdS/CFT, arXiv:0711.1824 [INSPIRE].
  7. [7]
    B. Craps, T. Hertog and N. Turok, On the Quantum Resolution of Cosmological Singularities using AdS/CFT, Phys. Rev. D 86 (2012) 043513 [arXiv:0712.4180] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Maldacena, Vacuum decay into Anti de Sitter space, arXiv:1012.0274 [INSPIRE].
  9. [9]
    J.L.F. Barbon and E. Rabinovici, AdS Crunches, CFT Falls And Cosmological Complementarity, JHEP 04 (2011) 044 [arXiv:1102.3015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.L.F. Barbon and E. Rabinovici, Conformal Complementarity Maps, JHEP 12 (2013) 023 [arXiv:1308.1921] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.P. Kumar and V. Vaganov, Probing crunching AdS cosmologies, JHEP 02 (2016) 026 [arXiv:1510.03281] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S.P. Kumar and V. Vaganov, Quasinormal modes and holographic correlators in a crunching AdS geometry, JHEP 02 (2016) 065 [arXiv:1512.07184] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Smolkin and N. Turok, Dual description of a 4d cosmology, arXiv:1211.1322 [INSPIRE].
  14. [14]
    E. Sezgin and P. Sundell, On an exact cosmological solution of higher spin gauge theory, in 4th International Symposium on Quantum Theory and Symmetries and 6th International Workshop on Lie Theory and Its Applications in Physics (QTS-4) (LT-6), Varna, Bulgaria, 15 - 21 August 2005 [hep-th/0511296] [INSPIRE].
  15. [15]
    E. Sezgin and P. Sundell, An Exact solution of 4 − D higher-spin gauge theory, Nucl. Phys. B 762 (2007) 1 [hep-th/0508158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S.R. Das, J. Michelson, K. Narayan and S.P. Trivedi, Time dependent cosmologies and their duals, Phys. Rev. D 74 (2006) 026002 [hep-th/0602107] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    A. Awad, S.R. Das, S. Nampuri, K. Narayan and S.P. Trivedi, Gauge Theories with Time Dependent Couplings and their Cosmological Duals, Phys. Rev. D 79 (2009) 046004 [arXiv:0807.1517] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Auzzi, S. Elitzur, S.B. Gudnason and E. Rabinovici, Time-dependent stabilization in AdS/CFT, JHEP 08 (2012) 035 [arXiv:1206.2902] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    N. Engelhardt and G.T. Horowitz, Holographic Consequences of a No Transmission Principle, Phys. Rev. D 93 (2016) 026005 [arXiv:1509.07509] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    A. Bzowski, T. Hertog and M. Schillo, Cosmological singularities encoded in IR boundary correlations, JHEP 05 (2016) 168 [arXiv:1512.05761] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    N. Engelhardt and A.C. Wall, Extremal Surface Barriers, JHEP 03 (2014) 068 [arXiv:1312.3699] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The Black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I., JHEP 04 (2006) 044 [hep-th/0506202] [INSPIRE].
  24. [24]
    G. Festuccia and H. Liu, The Arrow of time, black holes, and quantum mixing of large N Yang-Mills theories, JHEP 12 (2007) 027 [hep-th/0611098] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    E.S. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, in The many faces of the superworld, M.A. Shifman eds., World Scientific, New York U.S.A. (1999) [hep-th/9910096] [INSPIRE].
  29. [29]
    M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: A Review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    J. Zinn-Justin, Quantum field theory and critical phenomena, Int. Ser. Monogr. Phys. 113 (2002) 1 [INSPIRE].Google Scholar
  31. [31]
    F. Cooper, S. Habib, Y. Kluger, E. Mottola, J.P. Paz and P.R. Anderson, Nonequilibrium quantum fields in the large N expansion, Phys. Rev. D 50 (1994) 2848 [hep-ph/9405352] [INSPIRE].
  32. [32]
    F. Cooper, S. Habib, Y. Kluger and E. Mottola, Nonequilibrium dynamics of symmetry breaking in lambda Phi**4 field theory, Phys. Rev. D 55 (1997) 6471 [hep-ph/9610345] [INSPIRE].
  33. [33]
    D. Boyanovsky, H.J. de Vega, R. Holman, D.S. Lee and A. Singh, Dissipation via particle production in scalar field theories, Phys. Rev. D 51 (1995) 4419 [hep-ph/9408214] [INSPIRE].
  34. [34]
    D. Boyanovsky, D. Cormier, H.J. de Vega and R. Holman, Out-of-equilibrium dynamics of an inflationary phase transition, Phys. Rev. D 55 (1997) 3373 [hep-ph/9610396] [INSPIRE].
  35. [35]
    D. Boyanovsky, D. Cormier, H.J. de Vega, R. Holman and S.P. Kumar, Nonperturbative quantum dynamics of a new inflation model, Phys. Rev. D 57 (1998) 2166 [hep-ph/9709232] [INSPIRE].
  36. [36]
    L.F. Abbott and S.R. Coleman, The Collapse of an Anti-de Sitter Bubble, Nucl. Phys. B 259 (1985) 170 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.A. Hartnoll and S.P. Kumar, The O(N ) model on a squashed S 3 and the Klebanov-Polyakov correspondence, JHEP 06 (2005) 012 [hep-th/0503238] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge U.K. (1982).CrossRefzbMATHGoogle Scholar
  39. [39]
    J.S. Dowker and R. Critchley, Effective Lagrangian and Energy Momentum Tensor in de Sitter Space, Phys. Rev. D 13 (1976) 3224 [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsSwansea UniversitySwanseaU.K.
  2. 2.Fields, Gravity & Strings, Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonSouth Korea

Personalised recommendations