*R*^{2} inflation to probe non-perturbative quantum gravity

- 37 Downloads

## Abstract

It is natural to expect a consistent inflationary model of the very early Universe to be an effective theory of quantum gravity, at least at energies much less than the Planck one. For the moment, *R* + *R*^{2}, or shortly *R*^{2}, inflation is the most successful in accounting for the latest CMB data from the PLANCK satellite and other experiments. Moreover, recently it was shown to be ultra-violet (UV) complete via an embedding into an analytic infinite derivative (AID) non-local gravity. In this paper, we derive a most general theory of gravity that contributes to perturbed linear equations of motion around maximally symmetric space-times. We show that such a theory is quadratic in the Ricci scalar and the Weyl tensor with AID operators along with the Einstein-Hilbert term and possibly a cosmological constant. We explicitly demonstrate that introduction of the Ricci tensor squared term is redundant. Working in this quadratic AID gravity framework without a cosmological term we prove that for a specified class of space homogeneous space-times, a space of solutions to the equations of motion is identical to the space of backgrounds in a local *R*^{2} model. We further compute the full second order perturbed action around any background belonging to that class. We proceed by extracting the key inflationary parameters of our model such as a spectral index (*n*_{ s }), a tensor-to-scalar ratio (*r*) and a tensor tilt (*n*_{ t }). It appears that *n*_{ s } remains the same as in the local *R*^{2} inflation in the leading slow-roll approximation, while *r* and *n*_{ t } get modified due to modification of the tensor power spectrum. This class of models allows for any value of *r* < 0.07 with a modified consistency relation which can be fixed by future observations of primordial *B*-modes of the CMB polarization. This makes the UV complete *R*^{2} gravity a natural target for future CMB probes.

## Keywords

Cosmology of Theories beyond the SM Models of Quantum Gravity## Notes

**Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]R.M. Wald,
*General relativity*, University of Chicago press, Chicago, U.S.A. (1984).CrossRefMATHGoogle Scholar - [2]Virgo, LIGO Scientific collaboration, B.P. Abbott et al.,
*Observation of gravitational waves from a binary black hole merger*,*Phys. Rev. Lett.***116**(2016) 061102 [arXiv:1602.03837] [INSPIRE]. - [3]K.S. Stelle,
*Renormalization of higher derivative quantum gravity*,*Phys. Rev.***D 16**(1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar - [4]K.S. Stelle,
*Classical gravity with higher derivatives*,*Gen. Rel. Grav.***9**(1978) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [5]A.A. Starobinsky,
*A new type of isotropic cosmological models without singularity*,*Phys. Lett.***91B**(1980) 99 [INSPIRE].ADSCrossRefMATHGoogle Scholar - [6]A. A. Starobinsky,
*Nonsingular model of the Universe with the quantum gravitational de Sitter stage and its observational consequences*, in the proceedings of the*Second Seminar “Quantum Theory of Gravity”*, October 13–15, Mopscow, Russia (1981).Google Scholar - [7]A.A. Starobinsky,
*The perturbation spectrum evolving from a nonsingular initially de-Sitter cosmology and the microwave background anisotropy*,*Sov. Astron. Lett.***9**(1983) 302 [INSPIRE].ADSGoogle Scholar - [8]Planck collaboration, P.A.R. Ade et al.,
*Planck 2015 results. XIII. Cosmological parameters*,*Astron. Astrophys.***594**(2016) A13 [arXiv:1502.01589] [INSPIRE]. - [9]Planck collaboration, P.A.R. Ade et al.,
*Planck 2015 results. XX. Constraints on inflation*,*Astron. Astrophys.***594**(2016) A20 [arXiv:1502.02114] [INSPIRE]. - [10]BICEP2, Keck Array collaboration, P.A.R. Ade et al.,
*Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of*95*GHz Band*,*Phys. Rev. Lett.***116**(2016) 031302 [arXiv:1510.09217] [INSPIRE]. - [11]M. Ostrogradsky,
*Mémoires sur les équations différentielles relatives au problème des isopérimètres*,*Mem. Ac. St. Petersbourg***6**(1850) 385.Google Scholar - [12]R.P. Woodard,
*Avoiding dark energy with 1/r modifications of gravity*,*Lect. Notes Phys.***720**(2007) 403 [astro-ph/0601672]. - [13]A. De Felice and S. Tsujikawa,
*f*(*R*)*theories*,*Living Rev. Rel.***13**(2010) 3 [arXiv:1002.4928] [INSPIRE]. - [14]C. Deffayet and D.A. Steer,
*A formal introduction to Horndeski and Galileon theories and their generalizations*,*Class. Quant. Grav.***30**(2013) 214006 [arXiv:1307.2450] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [15]A.A. Starobinsky,
*Evolution of small perturbations of isotropic cosmological models with one-loop quantum gravitational corrections*,*JETP Lett.***34**(1981) 438.ADSGoogle Scholar - [16]E. Witten,
*Interacting field theory of open superstrings*,*Nucl. Phys.***B 276**(1986) 291 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [17]I.Y. Arefeva, D.M. Belov, A.A. Giryavets, A.S. Koshelev and P.B. Medvedev,
*Noncommutative field theories and (super)string field theories*, in the proceedingso f the 11^{th}*Jorge Andre Swieca Summer School*, January 14–27, Campos do Jordao, Sao Paulo, Brazil (2001), hep-th/0111208 [INSPIRE]. - [18]V.S. Vladimirov, I.V. Volovich and E.I. Zelenov,
*p-adic analysis and mathematical physics*,*Ser. Sov. East Eur. Math.***1**(1994) 1.Google Scholar - [19]
- [20]T. Biswas, A. Mazumdar and W. Siegel,
*Bouncing universes in string-inspired gravity*,*JCAP***03**(2006) 009 [hep-th/0508194] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [21]T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar,
*Towards singularity and ghost free theories of gravity*,*Phys. Rev. Lett.***108**(2012) 031101 [arXiv:1110.5249] [INSPIRE].ADSCrossRefGoogle Scholar - [22]L. Modesto,
*Super-renormalizable quantum gravity*,*Phys. Rev.***D 86**(2012) 044005 [arXiv:1107.2403] [INSPIRE].ADSGoogle Scholar - [23]S. Talaganis, T. Biswas and A. Mazumdar,
*Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity*,*Class. Quant. Grav.***32**(2015) 215017 [arXiv:1412.3467] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [24]T. Biswas, A.S. Koshelev, A. Mazumdar and S.Yu. Vernov,
*Stable bounce and inflation in non-local higher derivative cosmology*,*JCAP***08**(2012) 024 [arXiv:1206.6374] [INSPIRE].ADSCrossRefGoogle Scholar - [25]V.P. Frolov,
*Mass-gap for black hole formation in higher derivative and ghost free gravity*,*Phys. Rev. Lett.***115**(2015) 051102 [arXiv:1505.00492] [INSPIRE].ADSCrossRefGoogle Scholar - [26]A. Conroy, A.S. Koshelev and A. Mazumdar,
*Defocusing of null rays in infinite derivative gravity*,*JCAP***01**(2017) 017 [arXiv:1605.02080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [27]J. Edholm, A.S. Koshelev and A. Mazumdar,
*Behavior of the Newtonian potential for ghost-free gravity and singularity-free gravity*,*Phys. Rev.***D 94**(2016) 104033 [arXiv:1604.01989] [INSPIRE].ADSGoogle Scholar - [28]A.S. Koshelev and A. Mazumdar,
*Do massive compact objects without event horizon exist in infinite derivative gravity?*,*Phys. Rev.***D 96**(2017) 084069 [arXiv:1707.00273] [INSPIRE].ADSGoogle Scholar - [29]I.Ya. Aref’eva, A.S. Koshelev and S. Yu. Vernov,
*Exact solution in a string cosmological model*,*Theor. Math. Phys.***148**(2006) 895 [astro-ph/0412619] [INSPIRE]. - [30]I. Ya. Aref’eva and A.S. Koshelev,
*Cosmic acceleration and crossing of w*= −1*barrier from cubic superstring field theory*,*JHEP***02**(2007) 041 [hep-th/0605085] [INSPIRE]. - [31]I. Ya. Aref’eva and A.S. Koshelev,
*Cosmological signature of tachyon condensation*,*JHEP***09**(2008) 068 [arXiv:0804.3570] [INSPIRE]. - [32]G. Calcagni,
*Cosmological tachyon from cubic string field theory*,*JHEP***05**(2006) 012 [hep-th/0512259] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [33]G. Calcagni, M. Montobbio and G. Nardelli,
*A route to nonlocal cosmology*,*Phys. Rev.***D 76**(2007) 126001 [arXiv:0705.3043] [INSPIRE].ADSMathSciNetGoogle Scholar - [34]T. Biswas, A.S. Koshelev and A. Mazumdar,
*Gravitational theories with stable (Anti-)de Sitter backgrounds*,*Fundam. Theor. Phys.***183**(2016) 97 [arXiv:1602.08475].MathSciNetCrossRefGoogle Scholar - [35]L. Modesto and L. Rachwal,
*Universally finite gravitational and gauge theories*,*Nucl. Phys.***B 900**(2015) 147 [arXiv:1503.00261] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [36]L. Modesto and L. Rachwal,
*Super-renormalizable and finite gravitational theories*,*Nucl. Phys.***B 889**(2014) 228 [arXiv:1407.8036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [37]L. Modesto, L. Rachwal and I.L. Shapiro,
*Renormalization group in super-renormalizable quantum gravity*, arXiv:1704.03988 [INSPIRE]. - [38]A.S. Koshelev, K. Sravan Kumar, L. Modesto and L. Rachwal,
*Finite quantum gravity in (A)dS*, arXiv:1710.07759 [INSPIRE]. - [39]A.H. Guth,
*The inflationary universe: a possible solution to the horizon and flatness problems*,*Phys. Rev.***D 23**(1981) 347 [INSPIRE].ADSMATHGoogle Scholar - [40]V. Mukhanov,
*Physical foundations of cosmology*, Cambridge University Press, Cambridge U.K. (2005).CrossRefMATHGoogle Scholar - [41]L. Kofman, A.D. Linde and A.A. Starobinsky,
*Reheating after inflation*,*Phys. Rev. Lett.***73**(1994) 3195 [hep-th/9405187] [INSPIRE].ADSCrossRefGoogle Scholar - [42]L. Kofman, A.D. Linde and A.A. Starobinsky,
*Towards the theory of reheating after inflation*,*Phys. Rev.***D 56**(1997) 3258 [hep-ph/9704452] [INSPIRE]. - [43]J. Martin, C. Ringeval, R. Trotta and V. Vennin,
*The best inflationary models after Planck*,*JCAP***03**(2014) 039 [arXiv:1312.3529] [INSPIRE].ADSMathSciNetGoogle Scholar - [44]V. Vennin, K. Koyama and D. Wands,
*Encyclopædia curvatonis*,*JCAP***11**(2015) 008 [arXiv:1507.07575] [INSPIRE].ADSCrossRefGoogle Scholar - [45]B. Craps, T. De Jonckheere and A.S. Koshelev,
*Cosmological perturbations in non-local higher-derivative gravity*,*JCAP***11**(2014) 022 [arXiv:1407.4982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [46]A.S. Koshelev, L. Modesto, L. Rachwal and A.A. Starobinsky,
*Occurrence of exact R*^{2}*inflation in non-local UV-complete gravity*,*JHEP***11**(2016) 067 [arXiv:1604.03127] [INSPIRE].ADSCrossRefGoogle Scholar - [47]T. Biswas, T. Koivisto and A. Mazumdar,
*Nonlocal theories of gravity: the flat space propagator*, in the proceedings of the*Barcelona Postgrad Encounters on Fundamental Physics*, October 17–19, Barcelona, Spain (2012), arXiv:1302.0532 [INSPIRE]. - [48]T. Biswas, A.S. Koshelev and A. Mazumdar,
*Consistent higher derivative gravitational theories with stable de Sitter and Anti-de Sitter backgrounds*,*Phys. Rev.***D 95**(2017) 043533 [arXiv:1606.01250] [INSPIRE].ADSGoogle Scholar - [49]A.S. Koshelev,
*Stable analytic bounce in non-local Einstein-Gauss-Bonnet cosmology*,*Class. Quant. Grav.***30**(2013) 155001 [arXiv:1302.2140] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [50]T. Biswas, A. Conroy, A.S. Koshelev and A. Mazumdar,
*Generalized ghost-free quadratic curvature gravity*,*Class. Quant. Grav.***31**(2014) 015022 [*Erratum ibid.***31**(2014) 159501] [arXiv:1308.2319] [INSPIRE]. - [51]S. Helgason,
*Differential geometry, Lie groups, and symmetric spaces*, Crm Proceedings & Lecture Notes. American Mathematical Society, U.S.A. (2001).Google Scholar - [52]V. Balasubramanian, J. de Boer and D. Minic,
*Notes on de Sitter space and holography*,*Class. Quant. Grav.***19**(2002) 5655 [hep-th/0207245] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [53]J. Edholm,
*UV completion of the Starobinsky model, tensor-to-scalar ratio and constraints on nonlocality*,*Phys. Rev.***D 95**(2017) 044004 [arXiv:1611.05062] [INSPIRE].ADSGoogle Scholar - [54]D.J. Brooker, S.D. Odintsov and R.P. Woodard,
*Precision predictions for the primordial power spectra from f*(*R*)*models of inflation*,*Nucl. Phys.***B 911**(2016) 318 [arXiv:1606.05879] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [55]D. Baumann, H. Lee and G.L. Pimentel,
*High-scale inflation and the tensor tilt*,*JHEP***01**(2016) 101 [arXiv:1507.07250] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [56]D. Müller, A. Ricciardone, A.A. Starobinsky and A. Toporensky,
*Anisotropic cosmological solutions in R*+*R*^{2}*gravity*, arXiv:1710.08753 [INSPIRE]. - [57]J. Ellis, D.V. Nanopoulos and K.A. Olive,
*Starobinsky-like inflationary models as avatars of no-scale supergravity*,*JCAP***10**(2013) 009 [arXiv:1307.3537] [INSPIRE].ADSCrossRefGoogle Scholar - [58]A. Kehagias, A. Moradinezhad Dizgah and A. Riotto,
*Remarks on the Starobinsky model of inflation and its descendants*,*Phys. Rev.***D 89**(2014) 043527 [arXiv:1312.1155] [INSPIRE].ADSGoogle Scholar - [59]A.S. Koshelev, K. Sravan Kumar and P. Vargas Moniz,
*Effective models of inflation from a nonlocal framework*,*Phys. Rev.***D 96**(2017) 103503 [arXiv:1604.01440] [INSPIRE].ADSGoogle Scholar - [60]C.P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo,
*Robust inflation from fibrous strings*,*JCAP***05**(2016) 032 [arXiv:1603.06789] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [61]R. Kallosh, A. Linde and D. Roest,
*Superconformal inflationary α-attractors*,*JHEP***11**(2013) 198 [arXiv:1311.0472] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar