Advertisement

When rational sections become cyclic — Gauge enhancement in F-theory via Mordell-Weil torsion

  • Florent Baume
  • Mirjam Cvetič
  • Craig Lawrie
  • Ling Lin
Open Access
Regular Article - Theoretical Physics

Abstract

We explore novel gauge enhancements from abelian to non-simply-connected gauge groups in F-theory. To this end we consider complex structure deformations of elliptic fibrations with a Mordell-Weil group of rank one and identify the conditions under which the generating section becomes torsional. For the specific case of ℤ2 torsion we construct the generic solution to these conditions and show that the associated F-theory compactification exhibits the global gauge group [SU(2) × SU(4)]/ℤ2 × SU(2). The subsolution with gauge group SU(2)/ℤ2 × SU(2), for which we provide a global resolution, is related by a further complex structure deformation to a genus-one fibration with a bisection whose Jacobian has a ℤ2 torsional section. While an analysis of the spectrum on the Jacobian fibration reveals an SU(2)/ℤ2 × ℤ2 gauge theory, reproducing this result from the bisection geometry raises some conceptual puzzles about F-theory on genus-one fibrations.

Keywords

F-Theory Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].
  3. [3]
    D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].
  4. [4]
    P. Deligne, Courbes elliptiques: formulaire d’après J. Tate, in Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics volume 476, Springer, Berlin Germany (1975).Google Scholar
  5. [5]
    K. Kodaira, On compact complex analytic surfaces. I, Ann. Math. 71 (1960) 111.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    K. Kodaira, On compact analytic surfaces. II, Ann. Math. 77 (1963) 563.CrossRefMATHGoogle Scholar
  7. [7]
    K. Kodaira, On compact analytic surfaces. III, Ann. Math. 78 (1963) 1.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Études Sci. Publ. Math. No. 21 (1964) 128.Google Scholar
  9. [9]
    P.S. Aspinwall and D.R. Morrison, Nonsimply connected gauge groups and rational points on elliptic curves, JHEP 07 (1998) 012 [hep-th/9805206] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P.S. Aspinwall, S.H. Katz and D.R. Morrison, Lie groups, Calabi-Yau threefolds and F-theory, Adv. Theor. Math. Phys. 4 (2000) 95 [hep-th/0002012] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    C. Mayrhofer, D.R. Morrison, O. Till and T. Weigand, Mordell-Weil torsion and the global structure of gauge groups in F-theory, JHEP 10 (2014) 16 [arXiv:1405.3656] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    L.J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc. Cambridge Philos. Soc. 21 (1922) 179.MATHGoogle Scholar
  13. [13]
    M. Cvetič and L. Lin, The global gauge group structure of F-theory compactification with U(1)s, JHEP 01 (2018) 157 [arXiv:1706.08521] [INSPIRE].
  14. [14]
    M. Cvetič, D. Klevers, H. Piragua and W. Taylor, General U(1) × U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure, JHEP 11 (2015) 204 [arXiv:1507.05954] [INSPIRE].
  15. [15]
    D. Klevers and W. Taylor, Three-index symmetric matter representations of SU(2) in F-theory from non-Tate form Weierstrass models, JHEP 06 (2016) 171 [arXiv:1604.01030] [INSPIRE].
  16. [16]
    D.R. Morrison and D.S. Park, F-theory and the Mordell-Weil group of elliptically-fibered Calabi-Yau threefolds, JHEP 10 (2012) 128 [arXiv:1208.2695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].
  18. [18]
    V. Braun, T.W. Grimm and J. Keitel, New global F-theory GUTs with U(1) symmetries, JHEP 09 (2013) 154 [arXiv:1302.1854] [INSPIRE].
  19. [19]
    M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections, JHEP 06 (2013) 067 [arXiv:1303.6970] [INSPIRE].
  20. [20]
    V. Braun, T.W. Grimm and J. Keitel, Geometric engineering in toric F-theory and GUTs with U(1) gauge factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].
  21. [21]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, SU(5) tops with multiple U(1)s in F-theory, Nucl. Phys. B 882 (2014) 1 [arXiv:1307.2902] [INSPIRE].
  22. [22]
    D.R. Morrison and W. Taylor, Sections, multisections and U(1) fields in F-theory, arXiv:1404.1527 [INSPIRE].
  23. [23]
    I. Antoniadis and G.K. Leontaris, F-GUTs with Mordell-Weil U(1)’s, Phys. Lett. B 735 (2014) 226 [arXiv:1404.6720] [INSPIRE].
  24. [24]
    M. Kuntzler and S. Schäfer-Nameki, Tate trees for elliptic fibrations with rank one Mordell-Weil group, arXiv:1406.5174 [INSPIRE].
  25. [25]
    M. Esole, M.J. Kang and S.-T. Yau, A new model for elliptic fibrations with a rank one Mordell-Weil group: I. singular fibers and semi-stable degenerations, arXiv:1410.0003 [INSPIRE].
  26. [26]
    M. Cvetič, A. Grassi, D. Klevers, M. Poretschkin and P. Song, Origin of abelian gauge symmetries in heterotic/F-theory duality, JHEP 04 (2016) 041 [arXiv:1511.08208] [INSPIRE].ADSMATHGoogle Scholar
  27. [27]
    Y.-N. Wang, Tuned and non-Higgsable U(1)s in F-theory, JHEP 03 (2017) 140 [arXiv:1611.08665] [INSPIRE].
  28. [28]
    D. Klevers et al., F-Theory on all toric hypersurface fibrations and its Higgs branches, JHEP 01 (2015) 142 [arXiv:1408.4808] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    M. Cvetič, R. Donagi, D. Klevers, H. Piragua and M. Poretschkin, F-theory vacua with3 gauge symmetry, Nucl. Phys. B 898 (2015) 736 [arXiv:1502.06953] [INSPIRE].
  30. [30]
    C. Lawrie, S. Schäfer-Nameki and J.-M. Wong, F-theory and all things rational: surveying U(1) symmetries with rational sections, JHEP 09 (2015) 144 [arXiv:1504.05593] [INSPIRE].
  31. [31]
    S. Krippendorf, S. Schäfer-Nameki and J.-M. Wong, Froggatt-Nielsen meets Mordell-Weil: a phenomenological survey of global F-theory GUTs with U(1)s, JHEP 11 (2015) 008 [arXiv:1507.05961] [INSPIRE].
  32. [32]
    D.R. Morrison and D.S. Park, Tall sections from non-minimal transformations, JHEP 10 (2016) 033 [arXiv:1606.07444] [INSPIRE].
  33. [33]
    D.S. Park, Anomaly equations and intersection theory, JHEP 01 (2012) 093 [arXiv:1111.2351] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    P.-K. Oehlmann, J. Reuter and T. Schimannek, Mordell-Weil torsion in the mirror of multi-sections, JHEP 12 (2016) 031 [arXiv:1604.00011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M. Cvetič, A. Grassi and M. Poretschkin, Discrete symmetries in heterotic/F-theory duality and mirror symmetry, JHEP 06 (2017) 156 [arXiv:1607.03176] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    R. Miranda, The basic theory of elliptic surfaces, ETS Editrice, Pisa Italy (1989).Google Scholar
  37. [37]
    T. Nagell, Sur les propriétés arithmétiques des cubiques planes du premier genre, Acta Math. 52 (1929) 93.Google Scholar
  38. [38]
    T. Shioda, Mordell-Weil lattices and Galois representation. I, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989) 268.Google Scholar
  39. [39]
    T. Shioda, On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 (1990) 211.Google Scholar
  40. [40]
    M. Auslander and D.A. Buchsbaum, Unique factorization in regular local rings, Proc. Nat. Acad. Sci. U.S.A. 45 (1959) 733.ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    C. Lawrie and D. Sacco, Tate’s algorithm for F-theory GUTs with two U(1)s, JHEP 03 (2015) 055 [arXiv:1412.4125] [INSPIRE].
  42. [42]
    J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, in Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics volume 476, Springer, Berlin Germany (1975).Google Scholar
  43. [43]
    M. Bershadsky et al., Geometric singularities and enhanced gauge symmetries, Nucl. Phys. B 481 (1996) 215 [hep-th/9605200] [INSPIRE].
  44. [44]
    S. Katz, D.R. Morrison, S. Schäfer-Nameki and J. Sully, Tate’s algorithm and F-theory, JHEP 08 (2011) 094 [arXiv:1106.3854] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    V. Sadov, Generalized Green-Schwarz mechanism in F-theory, Phys. Lett. B 388 (1996) 45 [hep-th/9606008] [INSPIRE].
  46. [46]
    D.R. Morrison and W. Taylor, Matter and singularities, JHEP 01 (2012) 022 [arXiv:1106.3563] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].
  48. [48]
    A. Grassi and D.R. Morrison, Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds, Commun. Num. Theor. Phys. 6 (2012) 51 [arXiv:1109.0042] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].
  50. [50]
    B. Petersen, M. Ratz and R. Schieren, Patterns of remnant discrete symmetries, JHEP 08 (2009) 111 [arXiv:0907.4049] [INSPIRE].
  51. [51]
    F. Baume, E. Palti and S. Schwieger, On E 8 and F-theory GUTs, JHEP 06 (2015) 039 [arXiv:1502.03878] [INSPIRE].
  52. [52]
    M. Esole and S.-T. Yau, Small resolutions of SU(5)-models in F-theory, Adv. Theor. Math. Phys. 17 (2013) 1195 [arXiv:1107.0733] [INSPIRE].
  53. [53]
    J. Marsano and S. Schäfer-Nameki, Yukawas, G-flux and spectral covers from resolved Calabi-Yau’s, JHEP 11 (2011) 098 [arXiv:1108.1794] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    S. Krause, C. Mayrhofer and T. Weigand, G 4 flux, chiral matter and singularity resolution in F-theory compactifications, Nucl. Phys. B 858 (2012) 1 [arXiv:1109.3454] [INSPIRE].
  55. [55]
    C. Lawrie and S. Schäfer-Nameki, The tate form on steroids: resolution and higher codimension fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    A.P. Braun and S. Schäfer-Nameki, Box graphs and resolutions I, Nucl. Phys. B 905 (2016) 447 [arXiv:1407.3520] [INSPIRE].
  57. [57]
    A.P. Braun and S. Schäfer-Nameki, Box graphs and resolutions II: from Coulomb phases to fiber faces, Nucl. Phys. B 905 (2016) 480 [arXiv:1511.01801] [INSPIRE].
  58. [58]
    L. Lin and T. Weigand, G 4 -flux and standard model vacua in F-theory, Nucl. Phys. B 913 (2016) 209 [arXiv:1604.04292] [INSPIRE].
  59. [59]
    H. Hayashi, C. Lawrie and S. Schäfer-Nameki, Phases, flops and F-theory: SU(5) gauge theories, JHEP 10 (2013) 046 [arXiv:1304.1678] [INSPIRE].
  60. [60]
    H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki, Box graphs and singular fibers, JHEP 05 (2014) 048 [arXiv:1402.2653] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    M. Esole, S.-H. Shao and S.-T. Yau, Singularities and gauge theory phases, Adv. Theor. Math. Phys. 19 (2015) 1183 [arXiv:1402.6331] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    M. Esole, S.-H. Shao and S.-T. Yau, Singularities and gauge theory phases II, Adv. Theor. Math. Phys. 20 (2016) 683 [arXiv:1407.1867] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    A. Cattaneo, Crepant resolutions of Weierstrass threefolds and non-Kodaira fibres, arXiv:1307.7997 [INSPIRE].
  64. [64]
    P. Arras, A. Grassi and T. Weigand, Terminal singularities, Milnor numbers and matter in F-theory, J. Geom. Phys. 123 (2018) 71 [arXiv:1612.05646] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    M. Esole, P. Jefferson and M.J. Kang, Euler characteristics of crepant resolutions of Weierstrass models, arXiv:1703.00905 [INSPIRE].
  66. [66]
    R. Wazir, Arithmetic on elliptic threefolds, Compos. Math. 140 (2004) 567.MathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-theory, spinning black holes and multi-string branches, JHEP 01 (2016) 009 [arXiv:1509.00455] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    C. Lawrie, S. Schäfer-Nameki and T. Weigand, Chiral 2d theories from N = 4 SYM with varying coupling, JHEP 04 (2017) 111 [arXiv:1612.05640] [INSPIRE].
  69. [69]
    C. Lawrie, S. Schäfer-Nameki and T. Weigand, The gravitational sector of 2d (0, 2) F-theory vacua, JHEP 05 (2017) 103 [arXiv:1612.06393] [INSPIRE].
  70. [70]
    C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS 3 /CFT 2, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
  71. [71]
    S. Lang and J. Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958) 659.Google Scholar
  72. [72]
    I.R. Shafarevich, Principal homogeneous spaces defined over a function field, Trudy Mat. Inst. Steklov. 64 (1961) 316.MathSciNetMATHGoogle Scholar
  73. [73]
    I. Dolgachev and M. Gross, Elliptic threefolds. I. Ogg-Shafarevich theory, J. Algebraic Geom. 3 (1994) 39.Google Scholar
  74. [74]
    V. Braun and D.R. Morrison, F-theory on genus-one fibrations, JHEP 08 (2014) 132 [arXiv:1401.7844] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    C. Mayrhofer, E. Palti, O. Till and T. Weigand, On discrete symmetries and torsion homology in F-theory, JHEP 06 (2015) 029 [arXiv:1410.7814] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    I. García-Etxebarria, T.W. Grimm and J. Keitel, Yukawas and discrete symmetries in F-theory compactifications without section, JHEP 11 (2014) 125 [arXiv:1408.6448] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    V. Braun, T.W. Grimm and J. Keitel, Complete intersection fibers in F-theory, JHEP 03 (2015) 125 [arXiv:1411.2615] [INSPIRE].
  78. [78]
    L.B. Anderson, I. García-Etxebarria, T.W. Grimm and J. Keitel, Physics of F-theory compactifications without section, JHEP 12 (2014) 156 [arXiv:1406.5180] [INSPIRE].
  79. [79]
    C. Mayrhofer, E. Palti, O. Till and T. Weigand, Discrete gauge symmetries by Higgsing in four-dimensional F-theory compactifications, JHEP 12 (2014) 068 [arXiv:1408.6831] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A.P. Braun, A. Collinucci and R. Valandro, The fate of U(1)’s at strong coupling in F-theory, JHEP 07 (2014) 028 [arXiv:1402.4054] [INSPIRE].
  81. [81]
    D.R. Morrison, D.S. Park and W. Taylor, Non-Higgsable abelian gauge symmetry and F-theory on fiber products of rational elliptic surfaces, arXiv:1610.06929 [INSPIRE].
  82. [82]
    T.W. Grimm, A. Kapfer and D. Klevers, The arithmetic of elliptic fibrations in gauge theories on a circle, JHEP 06 (2016) 112 [arXiv:1510.04281] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    L. Lin, C. Mayrhofer, O. Till and T. Weigand, Fluxes in F-theory compactifications on genus-one fibrations, JHEP 01 (2016) 098 [arXiv:1508.00162] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  84. [84]
    J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, Elliptic fibrations for SU(5) × U(1) × U(1) F-theory vacua, Phys. Rev. D 88 (2013) 046005 [arXiv:1303.5054] [INSPIRE].
  85. [85]
    M. Cvetič, D. Klevers and H. Piragua, F-theory compactifications with multiple U(1)-factors: addendum, JHEP 12 (2013) 056 [arXiv:1307.6425] [INSPIRE].
  86. [86]
    M. Cvetič, D. Klevers, H. Piragua and P. Song, Elliptic fibrations with rank three Mordell-Weil group: F-theory with U(1) × U(1) × U(1) gauge symmetry, JHEP 03 (2014) 021 [arXiv:1310.0463] [INSPIRE].
  87. [87]
    T.W. Grimm and T. Weigand, On abelian gauge symmetries and proton decay in global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].
  88. [88]
    D. Klevers, D.R. Morrison, N. Raghuram and W. Taylor, Exotic matter on singular divisors in F-theory, JHEP 11 (2017) 124 [arXiv:1706.08194] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  89. [89]
    M. Cvetič, C. Lawrie, L. Lin and T. Weigand, to appear.Google Scholar
  90. [90]
    J.H. Silverman, The arithmetic of elliptic curves, 2nd edition, Graduate texts in mathematics volume 106, Springer, Germany (2009).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Florent Baume
    • 1
  • Mirjam Cvetič
    • 2
    • 3
  • Craig Lawrie
    • 1
  • Ling Lin
    • 2
  1. 1.Institut für Theoretische PhysikRuprecht-Karls-UniversitätHeidelbergGermany
  2. 2.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaU.S.A.
  3. 3.Center for Applied Mathematics and Theoretical PhysicsUniversity of MariborMariborSlovenia

Personalised recommendations