Advertisement

Roper resonances and quasi-normal modes of Skyrmions

  • C. Adam
  • M. Haberichter
  • T. Romanczukiewicz
  • A. Wereszczynski
Open Access
Regular Article - Theoretical Physics

Abstract

Radial vibrations of charge one hedgehog Skyrmions in the full Skyrme model are analysed. We investigate how the properties of the lowest resonance modes (quasi normal modes) — their frequencies and widths — depend on the form of the potential (value of the pion mass as well as the addition of further potentials) and on the inclusion of the sextic term. Then we consider the inverse problem, where certain values for the frequencies and widths are imposed, and the field theoretic Skyrme model potential giving rise to them is reconstructed. This latter method allows to reproduce the physical Roper resonances, as well as further physical properties of nucleons, with high precision.

Keywords

Chiral Lagrangians Effective Field Theories Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556.MathSciNetCrossRefGoogle Scholar
  3. [3]
    T.H.R. Skyrme, Kinks and the Dirac equation, J. Math. Phys. 12 (1971) 1735 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  5. [5]
    E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    E. Witten, Current Algebra, Baryons and Quark Confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].
  7. [7]
    G.S. Adkins, C.R. Nappi and E. Witten, Static Properties of Nucleons in the Skyrme Model, Nucl. Phys. B 228 (1983) 552 [INSPIRE].
  8. [8]
    G.S. Adkins and C.R. Nappi, The Skyrme Model with Pion Masses, Nucl. Phys. B 233 (1984) 109 [INSPIRE].
  9. [9]
    A. Jackson, A.D. Jackson, A.S. Goldhaber, G.E. Brown and L.C. Castillejo, A Modified Skyrmion, Phys. Lett. B 154 (1985) 101 [INSPIRE].
  10. [10]
    G. Holzwarth and B. Schwesinger, Baryons in the Skyrme Model, Rept. Prog. Phys. 49 (1986) 825 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    I. Zahed and G.E. Brown, The Skyrme Model, Phys. Rept. 142 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    B. Schwesinger and H. Weigel, Vector Mesons Versus Higher Order Terms in the Skyrme Model Approach to Baryon Resonances, Nucl. Phys. A 465 (1987) 733 [INSPIRE].
  13. [13]
    H. Weigel, B. Schwesinger and G. Holzwarth, Exotic Baryon Number B = 2 States in the SU(2) Skyrme Model, Phys. Lett. B 168 (1986) 321 [INSPIRE].
  14. [14]
    B. Schwesinger, H. Weigel, G. Holzwarth and A. Hayashi, The Skyrme Soliton in Pion, Vector and Scalar Meson Fields: πN Scattering and Photoproduction, Phys. Rept. 173 (1989) 173 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Braaten and L. Carson, The Deuteron as a Soliton in the Skyrme Model, Phys. Rev. Lett. 56 (1986) 1897 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    E. Braaten and L. Carson, The Deuteron as a Toroidal Skyrmion, Phys. Rev. D 38 (1988) 3525 [INSPIRE].
  17. [17]
    L. Carson, B = 3 nuclei as quantized multiskyrmions, Phys. Rev. Lett. 66 (1991) 1406 [INSPIRE].
  18. [18]
    T.S. Walhout, Multiskyrmions as nuclei, Nucl. Phys. A 531 (1991) 596 [INSPIRE].
  19. [19]
    O.V. Manko, N.S. Manton and S.W. Wood, Light nuclei as quantized skyrmions, Phys. Rev. C 76 (2007) 055203 [arXiv:0707.0868] [INSPIRE].
  20. [20]
    R.A. Battye, N.S. Manton, P.M. Sutcliffe and S.W. Wood, Light Nuclei of Even Mass Number in the Skyrme Model, Phys. Rev. C 80 (2009) 034323 [arXiv:0905.0099] [INSPIRE].
  21. [21]
    C.J. Halcrow, Vibrational quantisation of the B = 7 Skyrmion, Nucl. Phys. B 904 (2016) 106 [arXiv:1511.00682] [INSPIRE].
  22. [22]
    P.H.C. Lau and N.S. Manton, States of Carbon-12 in the Skyrme Model, Phys. Rev. Lett. 113 (2014) 232503 [arXiv:1408.6680] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C.J. Halcrow, C. King and N.S. Manton, A dynamical α-cluster model of 16 O, Phys. Rev. C 95 (2017) 031303 [arXiv:1608.05048] [INSPIRE].
  24. [24]
    C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, Bogomol’nyi-Prasad-Sommerfield Skyrme Model and Nuclear Binding Energies, Phys. Rev. Lett. 111 (2013) 232501 [arXiv:1312.2960] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, Nuclear binding energies from a Bogomol’nyi-Prasad-Sommerfield Skyrme model, Phys. Rev. C 88 (2013) 054313 [arXiv:1309.0820] [INSPIRE].
  26. [26]
    M. Gillard, D. Harland and M. Speight, Skyrmions with low binding energies, Nucl. Phys. B 895 (2015) 272 [arXiv:1501.05455] [INSPIRE].
  27. [27]
    M. Gillard, D. Harland, E. Kirk, B. Maybee and M. Speight, A point particle model of lightly bound skyrmions, Nucl. Phys. B 917 (2017) 286 [arXiv:1612.05481] [INSPIRE].
  28. [28]
    S.B. Gudnason, Loosening up the Skyrme model, Phys. Rev. D 93 (2016) 065048 [arXiv:1601.05024] [INSPIRE].
  29. [29]
    S.B. Gudnason, B. Zhang and N. Ma, Generalized Skyrme model with the loosely bound potential, Phys. Rev. D 94 (2016) 125004 [arXiv:1609.01591] [INSPIRE].
  30. [30]
    S.B. Gudnason and M. Nitta, Modifying the pion mass in the loosely bound Skyrme model, Phys. Rev. D 94 (2016) 065018 [arXiv:1606.02981] [INSPIRE].
  31. [31]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, BPS Skyrmions as neutron stars, Phys. Lett. B 742 (2015) 136 [arXiv:1407.3799] [INSPIRE].
  32. [32]
    C. Adam, C. Naya, J. Sanchez-Guillen, R. Vazquez and A. Wereszczynski, Neutron stars in the Bogomol’nyi-Prasad-Sommerfield Skyrme model: Mean-field limit versus full field theory, Phys. Rev. C 92 (2015) 025802 [arXiv:1503.03095] [INSPIRE].
  33. [33]
    S.G. Nelmes and B.M.A.G. Piette, Skyrmion stars and the multilayered rational map ansatz, Phys. Rev. D 84 (2011) 085017.Google Scholar
  34. [34]
    S.G. Nelmes and B.M.A.G. Piette, Phase transition and anisotropic deformations of neutron star matter, Phys. Rev. D 85 (2012) 123004.Google Scholar
  35. [35]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  36. [36]
    P. Dorey and T. Romanczukiewicz, Resonant kink-antikink scattering through quasinormal modes, Phys. Lett. B 779 (2018) 117 [arXiv:1712.10235] [INSPIRE].
  37. [37]
    C. Adam, M. Haberichter and A. Wereszczynski, Skyrme models and nuclear matter equation of state, Phys. Rev. C 92 (2015) 055807 [arXiv:1509.04795] [INSPIRE].
  38. [38]
    C. Adam, C. Naya, J. Sanchez-Guillen, J.M. Speight and A. Wereszczynski, Thermodynamics of the BPS Skyrme model, Phys. Rev. D 90 (2014) 045003 [arXiv:1405.2927] [INSPIRE].
  39. [39]
    L.P. Teo, Fermionic Casimir interaction in cylinder-plate and cylinder-cylinder geometries, Phys. Rev. D 91 (2015) 125030 [arXiv:1504.05317] [INSPIRE].
  40. [40]
    A. Jackson, A.D. Jackson, A.S. Goldhaber, G.E. Brown and L.C. Castillejo, A Modified Skyrmion, Phys. Lett. B 154 (1985) 101 [INSPIRE].
  41. [41]
    C. Hajduk and B. Schwesinger, The breathing mode of nucleons and Δ-isobars in the Skyrme model, Phys. Lett. B 140 (1984) 172 [INSPIRE].
  42. [42]
    U.B. Kaulfuss and U.G. Meissner, The Breathing Mode of the Modified Skyrmion, Phys. Lett. B 154 (1985) 193 [INSPIRE].
  43. [43]
    A. Hayashi and G. Holzwarth, Excited nucleon states in the Skyrme model, Phys. Lett. B 140 (1984) 175 [INSPIRE].
  44. [44]
    L.C. Biedenharn, Y. Dothan and M. Tarlini, Rotational-Vibrational Coupling in the Skyrmion Model for Baryons, Phys. Rev. D 31 (1985) 649 [INSPIRE].
  45. [45]
    C. Adam, C. Naya, J. Sanchez-Guillen and A. Wereszczynski, Rotational-vibrational coupling in the BPS Skyrme model of baryons, Phys. Lett. B 726 (2013) 892.Google Scholar
  46. [46]
    I. Zahed, U.G. Meissner and U.B. Kaulfuss, Low lying resonances in the Skyrme model using the semiclassical approximation, Nucl. Phys. A 426 (1984) 525 [INSPIRE].
  47. [47]
    J.D. Breit and C.R. Nappi, Phase Shifts of the Skyrmion Breathing Mode, Phys. Rev. Lett. 53 (1984) 889 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    W.T. Lin and B. Piette, Skyrmion Vibration Modes within the Rational Map Ansatz, Phys. Rev. D 77 (2008) 125028 [arXiv:0804.4786] [INSPIRE].
  49. [49]
    P. Bizon, T. Chmaj and A. Rostworowski, On asymptotic stability of the Skyrmion, Phys. Rev. D 75 (2007) 121702 [math-ph/0701037] [INSPIRE].
  50. [50]
    C. Adam, M. Haberichter, T. Romanczukiewicz and A. Wereszczynski, Radial vibrations of BPS skyrmions, Phys. Rev. D 94 (2016) 096013 [arXiv:1607.04286] [INSPIRE].
  51. [51]
    M. Heusler, S. Droz and N. Straumann, Stability analysis of selfgravitating skyrmions, Phys. Lett. B 271 (1991) 61 [INSPIRE].
  52. [52]
    R.A. Battye and P.M. Sutcliffe, Skyrmions, fullerenes and rational maps, Rev. Math. Phys. 14 (2002) 29 [hep-th/0103026] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    U. Ascher, J. Christiansen and R. Russell, Collocation Software for Boundary-Value ODEs, ACM TOMS 7 (1981) 209.Google Scholar
  54. [54]
    U. Ascher, J. Christiansen and R. Russell, A collocation solver for mixed order systems of boundary value problems, Math. Comput. 33 (1979) 659 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    Scipy, scientific tools for python, version 0.6.0, http://www.scipy.org.
  56. [56]
    T. Ioannidou and A. Lukacs, Time-dependent Bogomolny-Prasad-Sommerfeld skyrmions, J. Math. Phys. 57 (2016) 022901 [arXiv:1601.03048] [INSPIRE].
  57. [57]
    P. Dorey, A. Halavanau, J. Mercer, T. Romanczukiewicz and Y. Shnir, Boundary scattering in the \( \phi \) 4 model, JHEP 05 (2017) 107 [arXiv:1508.02329] [INSPIRE].
  58. [58]
    T. Romanczukiewicz and Y. Shnir, Oscillons in the presence of external potential, JHEP 01 (2018) 101 [arXiv:1706.09234] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [INSPIRE].
  60. [60]
    C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A BPS Skyrme model and baryons at large N c, Phys. Rev. D 82 (2010) 085015 [arXiv:1007.1567] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • C. Adam
    • 1
  • M. Haberichter
    • 2
    • 3
  • T. Romanczukiewicz
    • 4
  • A. Wereszczynski
    • 4
  1. 1.Departamento de Física de Partículas and Instituto Galego de Física de Altas Enerxias (IGFAE)Universidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Institut für PhysikUniversität OldenburgOldenburgGermany
  3. 3.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstU.S.A.
  4. 4.Institute of PhysicsJagiellonian UniversityKrakówPoland

Personalised recommendations