Advertisement

Constraining scalar resonances with top-quark pair production at the LHC

  • Diogo Buarque Franzosi
  • Federica Fabbri
  • Steffen Schumann
Open Access
Regular Article - Theoretical Physics
  • 25 Downloads

Abstract

Constraints on models which predict resonant top-quark pair production at the LHC are provided via a reinterpretation of the Standard Model (SM) particle level measurement of the top-anti-top invariant mass distribution, \( m\left(t\overline{t}\right) \). We make use of state-of-the-art Monte Carlo event simulation to perform a direct comparison with measurements of \( m\left(t\overline{t}\right) \) in the semi-leptonic channels, considering both the boosted and the resolved regime of the hadronic top decays. A simplified model to describe various scalar resonances decaying into top-quarks is considered, including CP-even and CP-odd, color-singlet and color-octet states, and the excluded regions in the respective parameter spaces are provided.

Keywords

Beyond Standard Model Perturbative QCD Technicolor and Composite Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V. Barger, W.-Y. Keung and B. Yencho, Azimuthal correlations in top pair decays and the effects of new heavy scalars, Phys. Rev. D 85 (2012) 034016 [arXiv:1112.5173] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Choi and H.S. Lee, Azimuthal decorrelation in \( t\overline{t} \) production at hadron colliders, Phys. Rev. D 87 (2013) 034012 [arXiv:1207.1484] [INSPIRE].
  3. [3]
    D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. Zhang, Single top production at next-to-leading order in the Standard Model effective field theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Englert, L. Moore, K. Nordström and M. Russell, Giving top quark effective operators a boost, Phys. Lett. B 763 (2016) 9 [arXiv:1607.04304] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CDF collaboration, T. Aaltonen et al., Search for new color-octet vector particle decaying to \( t\overline{t} \) in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 691 (2010) 183 [arXiv:0911.3112] [INSPIRE].
  8. [8]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].
  9. [9]
    CMS collaboration, Searches for new physics using the \( t\overline{t} \) invariant mass distribution in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 111 (2013) 211804 [Erratum ibid. 112 (2014) 119903] [arXiv:1309.2030] [INSPIRE].
  10. [10]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  11. [11]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, Phys. Rev. D 93 (2016) 032009 [arXiv:1510.03818] [INSPIRE].
  13. [13]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Eur. Phys. J. C 76 (2016) 538 [arXiv:1511.04716] [INSPIRE].
  14. [14]
    J.M. Butterworth, D. Grellscheid, M. Krämer, B. Sarrazin and D. Yallup, Constraining new physics with collider measurements of Standard Model signatures, JHEP 03 (2017) 078 [arXiv:1606.05296] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Gleisberg, S. Höche, F. Krauss, A. Schälicke, S. Schumann and J.-C. Winter, SHERPA 1.α: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].
  16. [16]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J.M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    S. Höche, S. Kuttimalai, S. Schumann and F. Siegert, Beyond Standard Model calculations with Sherpa, Eur. Phys. J. C 75 (2015) 135 [arXiv:1412.6478] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Krauss, D. Napoletano and S. Schumann, Simulating b-associated production of Z and Higgs bosons with the SHERPA event generator, Phys. Rev. D 95 (2017) 036012 [arXiv:1612.04640] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  27. [27]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for high energy physics, Comput. Phys. Commun. 134 (2001) 41 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, JHEP 09 (2013) 076 [arXiv:1306.4945] [INSPIRE].
  35. [35]
    J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].
  36. [36]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Czakon, D. Heymes and A. Mitov, Bump hunting in LHC \( t\overline{t} \) events, Phys. Rev. D 94 (2016) 114033 [arXiv:1608.00765] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the CERN LHC, Phys. Rev. D 74 (2006) 035009 [hep-ph/0606172] [INSPIRE].
  40. [40]
    E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Belyaev et al., Di-boson signatures as standard candles for partial compositeness, JHEP 01 (2017) 094 [Erratum ibid. 12 (2017) 088] [arXiv:1610.06591] [INSPIRE].
  42. [42]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Hayreter and G. Valencia, LHC constraints on color octet scalars, Phys. Rev. D 96 (2017) 035004 [arXiv:1703.04164] [INSPIRE].ADSGoogle Scholar
  44. [44]
    ATLAS collaboration, Search for new phenomena with photon+jet events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2016) 041 [arXiv:1512.05910] [INSPIRE].
  45. [45]
    ATLAS collaboration, Search for new phenomena in high-mass final states with a photon and a jet from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 102 [arXiv:1709.10440] [INSPIRE].
  46. [46]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  47. [47]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K.J.F. Gaemers and F. Hoogeveen, Higgs production and decay into heavy flavors with the gluon fusion mechanism, Phys. Lett. B 146 (1984) 347 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].
  52. [52]
    R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Gori, I.-W. Kim, N.R. Shah and K.M. Zurek, Closing the wedge: search strategies for extended Higgs sectors with heavy flavor final states, Phys. Rev. D 93 (2016) 075038 [arXiv:1602.02782] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Jung, J. Song and Y.W. Yoon, Dip or nothingness of a Higgs resonance from the interference with a complex phase, Phys. Rev. D 92 (2015) 055009 [arXiv:1505.00291] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Djouadi, J. Ellis and J. Quevillon, Interference effects in the decays of spin-zero resonances into γγ and tt, JHEP 07 (2016) 105 [arXiv:1605.00542] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    W. Bernreuther, P. Galler, C. Mellein, Z.G. Si and P. Uwer, Production of heavy Higgs bosons and decay into top quarks at the LHC, Phys. Rev. D 93 (2016) 034032 [arXiv:1511.05584] [INSPIRE].ADSGoogle Scholar
  57. [57]
    B. Hespel, F. Maltoni and E. Vryonidou, Signal background interference effects in heavy scalar production and decay to a top-anti-top pair, JHEP 10 (2016) 016 [arXiv:1606.04149] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. Buarque Franzosi, E. Vryonidou and C. Zhang, Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach, JHEP 10 (2017) 096 [arXiv:1707.06760] [INSPIRE].CrossRefGoogle Scholar
  59. [59]
    ATLAS collaboration, Search for heavy Higgs bosons A/H decaying to a top quark pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 119 (2017) 191803 [arXiv:1707.06025] [INSPIRE].
  60. [60]
    P. Fileviez Perez, R. Gavin, T. McElmurry and F. Petriello, Grand unification and light color-octet scalars at the LHC, Phys. Rev. D 78 (2008) 115017 [arXiv:0809.2106] [INSPIRE].ADSGoogle Scholar
  61. [61]
    I.V. Frolov, M.V. Martynov and A.D. Smirnov, Resonance contribution of scalar color octet to \( t\overline{t} \) production at the LHC in the minimal four-color quark-lepton symmetry model, Mod. Phys. Lett. A 31 (2016) 1650224 [arXiv:1610.08409] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the CERN LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [INSPIRE].ADSGoogle Scholar
  63. [63]
    C. Kim and T. Mehen, Color octet scalar bound states at the LHC, Phys. Rev. D 79 (2009) 035011 [arXiv:0812.0307] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Schumann, A. Renaud and D. Zerwas, Hadronically decaying color-adjoint scalars at the LHC, JHEP 09 (2011) 074 [arXiv:1108.2957] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, JHEP 11 (2017) 191 [arXiv:1708.00727] [INSPIRE].
  66. [66]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in lepton+jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 015 [arXiv:1209.4397] [INSPIRE].
  67. [67]
    CMS collaboration, Search for \( t\overline{t} \) resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 001 [arXiv:1704.03366] [INSPIRE].
  68. [68]
    ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
  69. [69]
    ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using 37 fb −1 of proton-proton collisions collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].
  70. [70]
    C. Anastasiou et al., CP-even scalar boson production via gluon fusion at the LHC, JHEP 09 (2016)037 [arXiv:1605.05761] [INSPIRE].
  71. [71]
    T. Alanne, M.T. Frandsen and D. Buarque Franzosi, Testing a dynamical origin of Standard Model fermion masses, Phys. Rev. D 94 (2016) 071703 [arXiv:1607.01440] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Diogo Buarque Franzosi
    • 1
  • Federica Fabbri
    • 2
  • Steffen Schumann
    • 1
  1. 1.Institut für Theoretische PhysikUniversität GöttingenGöttingenGermany
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di Bologna and INFN, Sezione di BolognaBolognaItaly

Personalised recommendations