Advertisement

Maximally supersymmetric AdS solutions and their moduli spaces

  • Severin Lüst
  • Philipp Rüter
  • Jan Louis
Open Access
Regular Article - Theoretical Physics

Abstract

We study maximally supersymmetric AdSD solutions of gauged supergravities in dimensions D ≥ 4. We show that such solutions can only exist if the gauge group after spontaneous symmetry breaking is a product of two reductive groups HR × Hmat, where HR is uniquely determined by the dimension D and the number of supersymmetries \( \mathcal{N} \) while Hmat is unconstrained. This resembles the structure of the global symmetry groups of the holographically dual SCFTs, where HR is interpreted as the R-symmetry and Hmat as the flavor symmetry. Moreover, we discuss possible supersymmetry preserving continuous deformations, which correspond to the conformal manifolds of the dual SCFTs. Under the assumption that the scalar manifold of the supergravity is a symmetric space we derive general group theoretical conditions on these moduli. Using these results we determine the AdS solutions of all gauged supergravities with more than 16 real supercharges. We find that almost all of them do not have supersymmetry preserving deformations with the only exception being the maximal supergravity in five dimensions with a moduli space given by SU(1, 1)/U(1). Furthermore, we determine the AdS solutions of four-dimensional \( \mathcal{N} \) = 3 supergravities and show that they similarly do not admit supersymmetric moduli.

Keywords

Extended Supersymmetry Supergravity Models AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. de Alwis et al., Moduli spaces in AdS 4 supergravity, JHEP 05 (2014) 102 [arXiv:1312.5659] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Louis and H. Triendl, Maximally supersymmetric AdS 4 vacua in N = 4 supergravity, JHEP 10 (2014) 007 [arXiv:1406.3363] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Tachikawa, Five-dimensional supergravity dual of a-maximization, Nucl. Phys. B 733 (2006) 188 [hep-th/0507057] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J. Louis and C. Muranaka, Moduli spaces of AdS 5 vacua in \( \mathcal{N} \) = 2 supergravity, JHEP 04 (2016) 178 [arXiv:1601.00482] [INSPIRE].ADSzbMATHGoogle Scholar
  6. [6]
    J. Louis, H. Triendl and M. Zagermann, \( \mathcal{N} \) = 4 supersymmetric AdS 5 vacua and their moduli spaces, JHEP 10 (2015) 083 [arXiv:1507.01623] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    P. Karndumri and J. Louis, Supersymmetric AdS 6 vacua in six-dimensional N = (1, 1) gauged supergravity, JHEP 01 (2017) 069 [arXiv:1612.00301] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  8. [8]
    J. Louis and S. Lüst, Supersymmetric AdS 7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120 [arXiv:1506.08040] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Rüter, Supersymmetric AdS backgrounds in gauged maximal supergravities, Master’s thesis, University of Hamburg, Hamburg Germany (2016).Google Scholar
  10. [10]
    J. Louis and S. Lüst, Classification of maximally supersymmetric backgrounds in supergravity theories, JHEP 02 (2017) 085 [arXiv:1607.08249] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Weidner, Gauged supergravities in various spacetime dimensions, Fortsch. Phys. 55 (2007) 843 [hep-th/0702084] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of superconformal theories, JHEP 11 (2016) 135 [arXiv:1602.01217] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H. Samtleben, Lectures on gauged supergravity and flux compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Trigiante, Gauged supergravities, Phys. Rept. 680 (2017) 1 [arXiv:1609.09745] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Cecotti, Supersymmetric field theories: geometric structures and dualities, Cambridge University Press, Cambridge U.K. (2014).zbMATHGoogle Scholar
  18. [18]
    H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Nicolai and H. Samtleben, Compact and noncompact gauged maximal supergravities in three-dimensions, JHEP 04 (2001) 022 [hep-th/0103032] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    B. de Wit, H. Samtleben and M. Trigiante, On lagrangians and gaugings of maximal supergravities, Nucl. Phys. B 655 (2003) 93 [hep-th/0212239] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    R. D’Auria, S. Ferrara and P. Fré, Special and quaternionic isometries: General couplings in N = 2 supergravity and the scalar potential, Nucl. Phys. B 359 (1991) 705 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    P. Fayet and J. Iliopoulos, Spontaneously broken supergauge symmetries and goldstone spinors, Phys. Lett. B 51 (1974) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Fayet, Fermi-Bose hypersymmetry, Nucl. Phys. B 113 (1976) 135 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    I.A. Bandos and T. Ortín, On the dualization of scalars into (d − 2)-forms in supergravity. Momentum maps, R-symmetry and gauged supergravity, JHEP 08 (2016) 135 [arXiv:1605.05559] [INSPIRE].
  26. [26]
    S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, John Wiley & Sons Inc., U.S.A. (1972).Google Scholar
  27. [27]
    B. de Wit and H. Nicolai, N = 8 supergravity with local SO(8) × SU(8) invariance, Phys. Lett. B 108 (1982) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Weinberg, The quantum theory of fields. Volume 2: modern applications, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  30. [30]
    R. D’Auria and S. Ferrara, On fermion masses, gradient flows and potential in supersymmetric theories, JHEP 05 (2001) 034 [hep-th/0103153] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. 169B (1986) 374 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    E. Bergshoeff, T. de Wit, U. Gran, R. Linares and D. Roest, (Non)abelian gauged supergravities in nine-dimensions, JHEP 10 (2002) 061 [hep-th/0209205] [INSPIRE].
  34. [34]
    J.J. Fernandez-Melgarejo, T. Ortín and E. Torrente-Lujan, The general gaugings of maximal D = 9 supergravity, JHEP 10 (2011) 068 [arXiv:1106.1760] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    E. Bergshoeff et al., The Bianchi classification of maximal D = 8 gauged supergravities, Class. Quant. Grav. 20 (2003) 3997 [hep-th/0306179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    M. de Roo, G. Dibitetto and Y. Yin, Critical points of maximal D = 8 gauged supergravities, JHEP 01 (2012) 029 [arXiv:1110.2886] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    H. Samtleben and M. Weidner, The maximal D = 7 supergravities, Nucl. Phys. B 725 (2005) 383 [hep-th/0506237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    E. Bergshoeff, H. Samtleben and E. Sezgin, The gaugings of maximal D = 6 supergravity, JHEP 03 (2008) 068 [arXiv:0712.4277] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    D. Roest and H. Samtleben, Twin supergravities, Class. Quant. Grav. 26 (2009) 155001 [arXiv:0904.1344] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 5 supergravities, Nucl. Phys. B 716 (2005) 215 [hep-th/0412173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    L. Andrianopoli et al., Exceptional N = 6 and N = 2 AdS 4 supergravity and zero-center modules, JHEP 04 (2009) 074 [arXiv:0810.1214] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    L. O’Raifeartaigh, Group structure of gauge theories, Cambridge University Press, Camrbidge U.K. (1986).CrossRefzbMATHGoogle Scholar
  44. [44]
    G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Borghese, Y. Pang, C.N. Pope and E. Sezgin, Correlation functions in ω-deformed N = 6 supergravity, JHEP 02 (2015) 112 [arXiv:1411.6020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    P. Karndumri, Holographic renormalization group flows in N = 3 Chern-Simons-Matter theory from N = 3 4D gauged supergravity, Phys. Rev. D 94 (2016) 045006 [arXiv:1601.05703] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    P. Karndumri and K. Upathambhakul, Gaugings of four-dimensional N = 3 supergravity and AdS 4 /CFT 3 holography, Phys. Rev. D 93 (2016) 125017 [arXiv:1602.02254] [INSPIRE].ADSGoogle Scholar
  48. [48]
    P. Karndumri, Supersymmetric Janus solutions in four-dimensional N = 3 gauged supergravity, Phys. Rev. D 93 (2016) 125012 [arXiv:1604.06007] [INSPIRE].ADSMathSciNetGoogle Scholar
  49. [49]
    L. Castellani et al., The complete N = 3 matter coupled supergravity, Nucl. Phys. B 268 (1986) 317 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    B. de Wit and A. Van Proeyen, Isometries of special manifolds, hep-th/9505097 [INSPIRE].
  51. [51]
    E. Bergshoeff et al., N = 2 supergravity in five-dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [hep-th/0403045] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    B. de Wit, I. Herger and H. Samtleben, Gauged locally supersymmetric D = 3 nonlinear σ-models, Nucl. Phys. B 671 (2003) 175 [hep-th/0307006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    T. Fischbacher, H. Nicolai and H. Samtleben, Vacua of maximal gauged D = 3 supergravities, Class. Quant. Grav. 19 (2002) 5297 [hep-th/0207206] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    D. Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  55. [55]
    E. Cremmer and B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. Lett. 80B (1978) 48 [INSPIRE].
  56. [56]
    E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    E. Cremmer, Supergravities in 5 dimensions, in Supergravities in diverse dimensions, A. Salam and E. Sezgin eds., World Scientific, Singapore (1989).Google Scholar
  58. [58]
    M. Günaydin, L.J. Romans and N.P. Warner, Gauged N = 8 supergravity in five-dimensions, Phys. Lett. 154B (1985) 268 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 supergravity, Nucl. Phys. B 259 (1985) 460 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Günaydin, L.J. Romans and N.P. Warner, Compact and noncompact gauged supergravity theories in five-dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    E. Sezgin and A. Salam, Maximal extended supergravity theory in seven-dimensions, Phys. Lett. 118B (1982) 359 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged maximally extended supergravity in seven-dimensions, Phys. Lett. 143B (1984) 103 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Centre de Physique Théorique, École Polytechnique, CNRSPalaiseauFrance
  2. 2.Maxwell Institute for Mathematical Sciences and Department of MathematicsHeriot-Watt UniversityEdinburghU.K.
  3. 3.Fachbereich Physik der Universität HamburgHamburgGermany
  4. 4.Zentrum für Mathematische PhysikUniversität HamburgHamburgGermany

Personalised recommendations