Special geometry on the 101 dimesional moduli space of the quintic threefold

  • Konstantin Aleshkin
  • Alexander Belavin
Open Access
Regular Article - Theoretical Physics


A new method for explicit computation of the CY moduli space metric was proposed by the authors recently. The method makes use of the connection of the moduli space with a certain Frobenius algebra. Here we clarify this approach and demonstrate its efficiency by computing the Special geometry of the 101-dimensional moduli space of the quintic threefold around the orbifold point.


Differential and Algebraic Geometry Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Aleshkin and A. Belavin, A new approach for computing the geometry of the moduli spaces for a Calabi-Yau manifold, J. Phys. A 51 (2018) 055403 [arXiv:1706.05342] [INSPIRE].
  2. [2]
    K. Aleshkin and A. Belavin, Special geometry on the moduli space for the two-moduli non-Fermat Calabi-Yau, Phys. Lett. B 776 (2018) 139 [arXiv:1708.08362] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    V. Arnold, A. Varchenko and S. Gusein-Zade, Singularities of Differentiable Maps, Birkhauser (1985).Google Scholar
  4. [4]
    A. Belavin and V. Belavin, Flat structures on the deformations of Gepner chiral rings, JHEP 10 (2016) 128 [arXiv:1606.07376] [INSPIRE].
  5. [5]
    P. Berglund et al., Periods for Calabi-Yau and Landau-Ginzburg vacua, Nucl. Phys. B 419 (1994) 352 [hep-th/9308005] [INSPIRE].
  6. [6]
    P. Berglund and T. Hubsch, A Generalized Construction of Calabi-Yau Models and Mirror Symmetry, arXiv:1611.10300 [INSPIRE].
  7. [7]
    P. Candelas, Yukawa Couplings Between (2, 1) Forms, Nucl. Phys. B 298 (1988) 458 [INSPIRE].
  8. [8]
    P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].
  9. [9]
    P. Candelas and X. de la Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].
  10. [10]
    P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 1., Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].
  11. [11]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].
  12. [12]
    P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2., Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].
  13. [13]
    P. Candelas, P.S. Green and T. Hubsch, Rolling Among Calabi-Yau Vacua, Nucl. Phys. B 330 (1990) 49 [INSPIRE].
  14. [14]
    P. Candelas and S. Kalara, Yukawa Couplings for a Three Generation Superstring Compactification, Nucl. Phys. B 298 (1988) 357 [INSPIRE].
  15. [15]
    S. Cecotti and C. Vafa, Topological antitopological fusion, Nucl. Phys. B 367 (1991) 359 [INSPIRE].
  16. [16]
    A. Chiodo, H. Iritani and Y. Ruan, Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, arXiv:1201.0813 [INSPIRE].
  17. [17]
    B. Dubrovin, Integrable systems in topological field theory, Nucl. Phys. B 379 (1992) 627 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D. Gepner, Exactly Solvable String Compactifications on Manifolds of SU(N) Holonomy, Phys. Lett. B 199 (1987) 380 [INSPIRE].
  19. [19]
    I.S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products, Elsevier/Academic Press, Amsterdam, seventh edition (2007).Google Scholar
  20. [20]
    A. Klemm and S. Theisen, Recent efforts in the computation of string couplings, Theor. Math. Phys. 95 (1993) 583 [hep-th/9210142] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    W. Lerche, C. Vafa and N.P. Warner, Chiral Rings in N = 2 Superconformal Theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].
  22. [22]
    E.J. Martinec, Algebraic Geometry and Effective Lagrangians, Phys. Lett. B 217 (1989) 431 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Saito, The higher residue pairings K F( k) for a family of hypersurface singular points, in Singularities, Part 2, Proc. Symp. Pure Math 40.2 (1983) 441.Google Scholar
  24. [24]
    A. Strominger, Special geometry, Commun. Math. Phys. 133 (1990) 163 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.L.D. Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.International School of Advanced Studies (SISSA)TriesteItaly
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia

Personalised recommendations