Skip to main content

Complex Langevin simulation of a random matrix model at nonzero chemical potential

A preprint version of the article is available at arXiv.

Abstract

In this paper we test the complex Langevin algorithm for numerical simulations of a random matrix model of QCD with a first order phase transition to a phase of finite baryon density. We observe that a naive implementation of the algorithm leads to phase quenched results, which were also derived analytically in this article. We test several fixes for the convergence issues of the algorithm, in particular the method of gauge cooling, the shifted representation, the deformation technique and reweighted complex Langevin, but only the latter method reproduces the correct analytical results in the region where the quark mass is inside the domain of the eigenvalues. In order to shed more light on the issues of the methods we also apply them to a similar random matrix model with a milder sign problem and no phase transition, and in that case gauge cooling solves the convergence problems as was shown before in the literature.

References

  1. [1]

    O. Philipsen, Lattice QCD at non-zero temperature and baryon density, in Modern perspectives in lattice QCD: quantum field theory and high performance computing. Proceedings, International School, 93rd session, Les Houches France, 3-28 August 2009, pg. 273 [arXiv:1009.4089] [INSPIRE].

  2. [2]

    K. Splittorff and J.J.M. Verbaarschot, Phase of the fermion determinant at nonzero chemical potential, Phys. Rev. Lett. 98 (2007) 031601 [hep-lat/0609076] [INSPIRE].

  3. [3]

    C.R. Allton et al., The QCD thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66 (2002) 074507 [hep-lat/0204010] [INSPIRE].

  4. [4]

    I.M. Barbour and A.J. Bell, Complex zeros of the partition function for lattice QCD, Nucl. Phys. B 372 (1992) 385 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67 (2003) 014505 [hep-lat/0209146] [INSPIRE].

  6. [6]

    P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016] [INSPIRE].

  7. [7]

    J.B. Kogut, M.A. Stephanov, D. Toublan, J.J.M. Verbaarschot and A. Zhitnitsky, QCD-like theories at finite baryon density, Nucl. Phys. B 582 (2000) 477 [hep-ph/0001171] [INSPIRE].

  8. [8]

    J.B. Kogut and D.K. Sinclair, Lattice QCD at finite isospin density at zero and finite temperature, Phys. Rev. D 66 (2002) 034505 [hep-lat/0202028] [INSPIRE].

  9. [9]

    G. Parisi, On complex probabilities, Phys. Lett. B 131 (1983) 393 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    J.R. Klauder, Stochastic quantization, Acta Phys. Austriaca Suppl. 25 (1983) 251 [INSPIRE].

    Google Scholar 

  11. [11]

    G. Aarts, E. Seiler and I.-O. Stamatescu, The complex Langevin method: when can it be trusted?, Phys. Rev. D 81 (2010) 054508 [arXiv:0912.3360] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    Z. Fodor, S.D. Katz, D. Sexty and C. Török, Complex Langevin dynamics for dynamical QCD at nonzero chemical potential: a comparison with multiparameter reweighting, Phys. Rev. D 92 (2015) 094516 [arXiv:1508.05260] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    J. Bloch and O. Schenk, Selected inversion as key to a stable Langevin evolution across the QCD phase boundary, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1707.08874] [INSPIRE].

  14. [14]

    E. Seiler, D. Sexty and I.-O. Stamatescu, Gauge cooling in complex Langevin for QCD with heavy quarks, Phys. Lett. B 723 (2013) 213 [arXiv:1211.3709] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  15. [15]

    D. Sexty, Simulating full QCD at nonzero density using the complex Langevin equation, Phys. Lett. B 729 (2014) 108 [arXiv:1307.7748] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  16. [16]

    G. Aarts, E. Seiler, D. Sexty and I.-O. Stamatescu, Simulating QCD at nonzero baryon density to all orders in the hopping parameter expansion, Phys. Rev. D 90 (2014) 114505 [arXiv:1408.3770] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    G. Aarts, E. Seiler, D. Sexty and I.-O. Stamatescu, Complex Langevin dynamics and zeroes of the fermion determinant, JHEP 05 (2017) 044 [Erratum ibid. 01 (2018) 128] [arXiv:1701.02322] [INSPIRE].

  18. [18]

    M.A. Stephanov, Random matrix model of QCD at finite density and the nature of the quenched limit, Phys. Rev. Lett. 76 (1996) 4472 [hep-lat/9604003] [INSPIRE].

  19. [19]

    A.D. Jackson and J.J.M. Verbaarschot, A random matrix model for chiral symmetry breaking, Phys. Rev. D 53 (1996) 7223 [hep-ph/9509324] [INSPIRE].

  20. [20]

    J.C. Osborn, Universal results from an alternate random matrix model for QCD with a baryon chemical potential, Phys. Rev. Lett. 93 (2004) 222001 [hep-th/0403131] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    J. Bloch, F. Bruckmann, M. Kieburg, K. Splittorff and J.J.M. Verbaarschot, Subsets of configurations and canonical partition functions, Phys. Rev. D 87 (2013) 034510 [arXiv:1211.3990] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    A.M. Halasz, A.D. Jackson and J.J.M. Verbaarschot, Fermion determinants in matrix models of QCD at nonzero chemical potential, Phys. Rev. D 56 (1997) 5140 [hep-lat/9703006] [INSPIRE].

  23. [23]

    P.H. Damgaard, K. Splittorff and J.J.M. Verbaarschot, Microscopic spectrum of the Wilson Dirac operator, Phys. Rev. Lett. 105 (2010) 162002 [arXiv:1001.2937] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    G. Akemann, P.H. Damgaard, K. Splittorff and J.J.M. Verbaarschot, Spectrum of the Wilson Dirac operator at finite lattice spacings, Phys. Rev. D 83 (2011) 085014 [arXiv:1012.0752] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    M. Kieburg, J.J.M. Verbaarschot and S. Zafeiropoulos, Eigenvalue density of the non-Hermitian Wilson Dirac operator, Phys. Rev. Lett. 108 (2012) 022001 [arXiv:1109.0656] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    M. Kieburg, J.J.M. Verbaarschot and S. Zafeiropoulos, Spectral properties of the Wilson Dirac operator and random matrix theory, Phys. Rev. D 88 (2013) 094502 [arXiv:1307.7251] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    M. Kieburg, J.J.M. Verbaarschot and S. Zafeiropoulos, Dirac spectrum of the Wilson Dirac operator for QCD with two colors, Phys. Rev. D 92 (2015) 045026 [arXiv:1505.01784] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. [28]

    K. Cichy, K. Splittorff and S. Zafeiropoulos, Twisted mass Dirac spectrum, arXiv:1612.01289 [INSPIRE].

  29. [29]

    J.J.M. Verbaarschot, The spectrum of the QCD Dirac operator and chiral random matrix theory: the threefold way, Phys. Rev. Lett. 72 (1994) 2531 [hep-th/9401059] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    J. Bloch, J. Glesaaen, O. Philipsen, J. Verbaarschot and S. Zafeiropoulos, Complex Langevin simulations of a finite density matrix model for QCD, in 12th Conference on Quark Confinement and the Hadron Spectrum (Confinement XII), Thessaloniki Greece, 28 August-4 September 2016 [EPJ Web Conf. 137 (2017) 07030] [arXiv:1612.04621] [INSPIRE].

  31. [31]

    J. Bloch, J. Glesaaen, J. Verbaarschot and S. Zafeiropoulos, Progress on complex Langevin simulations of a finite density matrix model for QCD, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1801.06456] [INSPIRE].

  32. [32]

    E.V. Shuryak and J.J.M. Verbaarschot, Random matrix theory and spectral sum rules for the Dirac operator in QCD, Nucl. Phys. A 560 (1993) 306 [hep-th/9212088] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    J. Bloch, A subset solution to the sign problem in random matrix simulations, Phys. Rev. D 86 (2012) 074505 [arXiv:1205.5500] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    J. Bloch, Evading the sign problem in random matrix simulations, Phys. Rev. Lett. 107 (2011) 132002 [arXiv:1103.3467] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    A. Mollgaard and K. Splittorff, Complex Langevin dynamics for chiral random matrix theory, Phys. Rev. D 88 (2013) 116007 [arXiv:1309.4335] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    A. Mollgaard and K. Splittorff, Full simulation of chiral random matrix theory at nonzero chemical potential by complex Langevin, Phys. Rev. D 91 (2015) 036007 [arXiv:1412.2729] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    K. Nagata, J. Nishimura and S. Shimasaki, Gauge cooling for the singular-drift problem in the complex Langevin method — a test in random matrix theory for finite density QCD, JHEP 07 (2016) 073 [arXiv:1604.07717] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    D. Toublan and J.J.M. Verbaarschot, Effective low-energy theories and QCD Dirac spectra, Int. J. Mod. Phys. B 15 (2001) 1404 [Ser. Adv. Quant. Many Body Theor. 3 (2000) 114] [hep-th/0001110] [INSPIRE].

  39. [39]

    M.G. Alford, A. Kapustin and F. Wilczek, Imaginary chemical potential and finite fermion density on the lattice, Phys. Rev. D 59 (1999) 054502 [hep-lat/9807039] [INSPIRE].

  40. [40]

    D.T. Son and M.A. Stephanov, QCD at finite isospin density, Phys. Rev. Lett. 86 (2001) 592 [hep-ph/0005225] [INSPIRE].

  41. [41]

    J. Bloch, J. Mahr and S. Schmalzbauer, Complex Langevin in low-dimensional QCD: the good and the not-so-good, PoS(LATTICE 2015)158 [arXiv:1508.05252] [INSPIRE].

  42. [42]

    J. Bloch, J. Meisinger and S. Schmalzbauer, Reweighted complex Langevin and its application to two-dimensional QCD, PoS(LATTICE2016)046 [arXiv:1701.01298] [INSPIRE].

  43. [43]

    J. Bloch, Reweighting complex Langevin trajectories, Phys. Rev. D 95 (2017) 054509 [arXiv:1701.00986] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    H. Fujii, S. Kamata and Y. Kikukawa, Performance of complex Langevin simulation in 0 + 1 dimensional massive Thirring model at finite density, arXiv:1710.08524 [INSPIRE].

  45. [45]

    K. Nagata, H. Matsufuru, J. Nishimura and S. Shimasaki, Gauge cooling for the singular-drift problem in the complex Langevin method — an application to finite density QCD, PoS(LATTICE2016)067 [arXiv:1611.08077] [INSPIRE].

  46. [46]

    R. Brent, An algorithm with guaranteed convergence for finding a zero of a function, in Algorithms for minimization without derivatives, ch. 4, Prentice-Hall, Englewood Cliffs NJ U.S.A., (1973).

  47. [47]

    G. Aarts and K. Splittorff, Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential, JHEP 08 (2010) 017 [arXiv:1006.0332] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  48. [48]

    G. Aarts, F.A. James, J.M. Pawlowski, E. Seiler, D. Sexty and I.-O. Stamatescu, Stability of complex Langevin dynamics in effective models, JHEP 03 (2013) 073 [arXiv:1212.5231] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    Y. Ito and J. Nishimura, Comparative studies of the deformation techniques for the singular-drift problem in the complex Langevin method, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1710.07929] [INSPIRE].

  50. [50]

    A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov and J.J.M. Verbaarschot, On the phase diagram of QCD, Phys. Rev. D 58 (1998) 096007 [hep-ph/9804290] [INSPIRE].

  51. [51]

    K. Nagata, J. Nishimura and S. Shimasaki, Complex Langevin simulation of QCD at finite density and low temperature using the deformation technique, in 35th International Symposium on Lattice Field Theory (Lattice 2017), Granada Spain, 18-24 June 2017 [arXiv:1710.07416] [INSPIRE].

  52. [52]

    K. Nagata, J. Nishimura and S. Shimasaki, Argument for justification of the complex Langevin method and the condition for correct convergence, Phys. Rev. D 94 (2016) 114515 [arXiv:1606.07627] [INSPIRE].

    ADS  Google Scholar 

  53. [53]

    A.M. Halasz, J.C. Osborn, M.A. Stephanov and J.J.M. Verbaarschot, Random matrices and the convergence of partition function zeros in finite density QCD, Phys. Rev. D 61 (2000) 076005 [hep-lat/9908018] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Zafeiropoulos.

Additional information

ArXiv ePrint: 1712.07514

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bloch, J., Glesaaen, J., Verbaarschot, J.J.M. et al. Complex Langevin simulation of a random matrix model at nonzero chemical potential. J. High Energ. Phys. 2018, 15 (2018). https://doi.org/10.1007/JHEP03(2018)015

Download citation

Keywords

  • Lattice QCD
  • Lattice Quantum Field Theory
  • Matrix Models