A unified model of quarks and leptons with a universal texture zero

  • Ivo de Medeiros Varzielas
  • Graham G. Ross
  • Jim Talbert
Open Access
Regular Article - Theoretical Physics


We show that a universal texture zero in the (1,1) position of all fermionic mass matrices, including heavy right-handed Majorana neutrinos driving a type-I see-saw mechanism, can lead to a viable spectrum of mass, mixing and CP violation for both quarks and leptons, including (but not limited to) three important postdictions: the Cabibbo angle, the charged lepton masses, and the leptonic ‘reactor’ angle. We model this texture zero with a non-Abelian discrete family symmetry that can easily be embedded in a grand unified framework, and discuss the details of the phenomenology after electroweak and family symmetry breaking. We provide an explicit numerical fit to the available data and obtain excellent agreement with the 18 observables in the charged fermion and neutrino sectors with just 9 free parameters. We further show that the vacua of our new scalar familon fields are readily aligned along desired directions in family space, and also demonstrate discrete gauge anomaly freedom at the relevant scale of our effective theory.


Discrete Symmetries GUT Neutrino Physics Quark Masses and SM Parameters 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.S. Lam, Symmetry of Lepton Mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].
  3. [3]
    E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A 4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [INSPIRE].
  4. [4]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].
  5. [5]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644 (2007) 153 [hep-ph/0512313] [INSPIRE].
  6. [6]
    S.F. King, Unified Models of Neutrinos, Flavour and CP-violation, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    C.S. Lam, Finite Symmetry of Leptonic Mass Matrices, Phys. Rev. D 87 (2013) 013001 [arXiv:1208.5527] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M. Holthausen, K.S. Lim and M. Lindner, Lepton Mixing Patterns from a Scan of Finite Discrete Groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Holthausen and K.S. Lim, Quark and Leptonic Mixing Patterns from the Breakdown of a Common Discrete Flavor Symmetry, Phys. Rev. D 88 (2013) 033018 [arXiv:1306.4356] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S.F. King, T. Neder and A.J. Stuart, Lepton mixing predictions from Δ(6n 2) family Symmetry, Phys. Lett. B 726 (2013) 312 [arXiv:1305.3200] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Lavoura and P.O. Ludl, Residual2 × ℤ2 symmetries and lepton mixing, Phys. Lett. B 731 (2014) 331 [arXiv:1401.5036] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    J. Talbert, [Re]constructing Finite Flavour Groups: Horizontal Symmetry Scans from the Bottom-Up, JHEP 12 (2014) 058 [arXiv:1409.7310] [INSPIRE].
  14. [14]
    A.S. Joshipura and K.M. Patel, A massless neutrino and lepton mixing patterns from finite discrete subgroups of U(3), JHEP 04 (2014) 009 [arXiv:1401.6397] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.S. Joshipura and K.M. Patel, Discrete flavor symmetries for degenerate solar neutrino pair and their predictions, Phys. Rev. D 90 (2014) 036005 [arXiv:1405.6106] [INSPIRE].ADSGoogle Scholar
  16. [16]
    C.-Y. Yao and G.-J. Ding, Lepton and Quark Mixing Patterns from Finite Flavor Symmetries, Phys. Rev. D 92 (2015) 096010 [arXiv:1505.03798] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.F. King and P.O. Ludl, Direct and Semi-Direct Approaches to Lepton Mixing with a Massless Neutrino, JHEP 06 (2016) 147 [arXiv:1605.01683] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. de Medeiros Varzielas, R.W. Rasmussen and J. Talbert, Bottom-Up Discrete Symmetries for Cabibbo Mixing, Int. J. Mod. Phys. A 32 (2017) 1750047 [arXiv:1605.03581] [INSPIRE].CrossRefzbMATHGoogle Scholar
  19. [19]
    C.-Y. Yao and G.-J. Ding, CP Symmetry and Lepton Mixing from a Scan of Finite Discrete Groups, Phys. Rev. D 94 (2016) 073006 [arXiv:1606.05610] [INSPIRE].ADSGoogle Scholar
  20. [20]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  21. [21]
    E. Ma, Neutrino Mass Matrix from Δ(27) Symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [INSPIRE].
  22. [22]
    C. Luhn, S. Nasri and P. Ramond, The flavor group Δ(3n 2), J. Math. Phys. 48 (2007) 073501 [hep-th/0701188] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    I. de Medeiros Varzielas, Δ(27) family symmetry and neutrino mixing, JHEP 08 (2015) 157 [arXiv:1507.00338] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    S.F. King, Atmospheric and solar neutrinos with a heavy singlet, Phys. Lett. B 439 (1998) 350 [hep-ph/9806440] [INSPIRE].
  26. [26]
    S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [INSPIRE].
  27. [27]
    S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [INSPIRE].
  28. [28]
    S.F. King, Constructing the large mixing angle MNS matrix in seesaw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [INSPIRE].
  29. [29]
    A.Yu. Smirnov, Seesaw enhancement of lepton mixing, Phys. Rev. D 48 (1993) 3264 [hep-ph/9304205] [INSPIRE].
  30. [30]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4× SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSGoogle Scholar
  32. [32]
    F. Björkeroth, F.J. de Anda, S.F. King and E. Perdomo, A natural S 4 × SO(10) model of flavour, JHEP 10 (2017) 148 [arXiv:1705.01555] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Olechowski and S. Pokorski, Heavy top quark and scale dependence of quark mixing, Phys. Lett. B 257 (1991) 388 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Ross and M. Serna, Unification and fermion mass structure, Phys. Lett. B 664 (2008) 97 [arXiv:0704.1248] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S.H. Chiu and T.K. Kuo, Renormalization of the quark mass matrix, Phys. Rev. D 93 (2016) 093006 [arXiv:1603.04568] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Gatto, G. Sartori and M. Tonin, Weak Selfmasses, Cabibbo Angle and Broken SU(2) × SU(2), Phys. Lett. B 28 (1968) 128 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H.P. Nilles, M. Ratz and P.K.S. Vaudrevange, Origin of Family Symmetries, Fortsch. Phys. 61 (2013) 493 [arXiv:1204.2206] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].
  40. [40]
    I. de Medeiros Varzielas and G.G. Ross, Discrete family symmetry, Higgs mediators and θ 13, JHEP 12 (2012) 041 [arXiv:1203.6636] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    NuFIT 3.0 (2016),
  42. [42]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.A. Casas, J.R. Espinosa, A. Ibarra and I. Navarro, General RG equations for physical neutrino parameters and their phenomenological implications, Nucl. Phys. B 573 (2000) 652 [hep-ph/9910420] [INSPIRE].
  44. [44]
    S. Gupta, S.K. Kang and C.S. Kim, Renormalization Group Evolution of Neutrino Parameters in Presence of Seesaw Threshold Effects and Majorana Phases, Nucl. Phys. B 893 (2015) 89 [arXiv:1406.7476] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    J.A. Casas, J.R. Espinosa, A. Ibarra and I. Navarro, Nearly degenerate neutrinos, supersymmetry and radiative corrections, Nucl. Phys. B 569 (2000) 82 [hep-ph/9905381] [INSPIRE].
  46. [46]
    P.H. Chankowski, W. Krolikowski and S. Pokorski, Fixed points in the evolution of neutrino mixings, Phys. Lett. B 473 (2000) 109 [hep-ph/9910231] [INSPIRE].
  47. [47]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [INSPIRE].
  48. [48]
    L.J. Hall and G.G. Ross, Discrete Symmetries and Neutrino Mass Perturbations for θ 13, JHEP 11 (2013) 091 [arXiv:1303.6962] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    L.E. Ibanez and G.G. Ross, Should discrete symmetries be anomaly-free?, CERN-TH-6000-91 (1991).
  52. [52]
    T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    T. Araki, Anomaly of Discrete Symmetries and Gauge Coupling Unification, Prog. Theor. Phys. 117 (2007) 1119 [hep-ph/0612306] [INSPIRE].
  54. [54]
    T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, (Non-)Abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].
  55. [55]
    C. Csáki and H. Murayama, Discrete anomaly matching, Nucl. Phys. B 515 (1998) 114 [hep-th/9710105] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    R.G. Roberts, A. Romanino, G.G. Ross and L. Velasco-Sevilla, Precision test of a fermion mass texture, Nucl. Phys. B 615 (2001) 358 [hep-ph/0104088] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Ivo de Medeiros Varzielas
    • 1
  • Graham G. Ross
    • 2
  • Jim Talbert
    • 3
  1. 1.CFTP, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  3. 3.Theory GroupDeutsches Elektronen-Synchrotron (DESY)HamburgGermany

Personalised recommendations