Advertisement

On form factors and correlation functions in twistor space

  • Laura Koster
  • Vladimir Mitev
  • Matthias Staudacher
  • Matthias Wilhelm
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of \( \mathcal{N}=4 \) super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers [1, 2], we show how to calculate the twistor-space diagrams for general N k MHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without α indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in [3].

Keywords

AdS-CFT Correspondence Scattering Amplitudes Supersymmetric gauge theory Wilson, ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, Composite Operators in the Twistor Formulation of \( \mathcal{N}=4 \) Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 117 (2016) 011601 [arXiv:1603.04471] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in \( \mathcal{N}=4 \) SYM from twistor space, JHEP 06(2016) 162 [arXiv:1604.00012] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  3. [3]
    L. Koster, V. Mitev and M. Staudacher, A Twistorial Approach to Integrability in \( \mathcal{N}=4 \) SYM, Fortsch. Phys. 63 (2015) 142 [arXiv:1410.6310] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    R. Boels, L.J. Mason and D. Skinner, Supersymmetric Gauge Theories in Twistor Space, JHEP 02 (2007) 014 [hep-th/0604040] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Boels, L.J. Mason and D. Skinner, From twistor actions to MHV diagrams, Phys. Lett. B 648 (2007) 90 [hep-th/0702035] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    L.J. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. Bullimore, L.J. Mason and D. Skinner, MHV Diagrams in Momentum Twistor Space, JHEP 12 (2010) 032 [arXiv:1009.1854] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    T. Adamo and L. Mason, MHV diagrams in twistor space and the twistor action, Phys. Rev. D 86 (2012) 065019 [arXiv:1103.1352] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Adamo, M. Bullimore, L. Mason and D. Skinner, Scattering Amplitudes and Wilson Loops in Twistor Space, J. Phys. A 44 (2011) 454008 [arXiv:1104.2890] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  12. [12]
    L.J. Mason and D. Skinner, The Complete Planar S-matrix of \( \mathcal{N}=4 \) SYM as a Wilson Loop in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. [13]
    M. Bullimore and D. Skinner, Holomorphic Linking, Loop Equations and Scattering Amplitudes in Twistor Space, arXiv:1101.1329 [INSPIRE].
  14. [14]
    D. Chicherin, R. Doobary, B. Eden, P. Heslop, G.P. Korchemsky, L. Mason and E. Sokatchev, Correlation functions of the chiral stress-tensor multiplet in \( \mathcal{N}=4 \) SYM, JHEP 06 (2015) 198 [arXiv:1412.8718] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  15. [15]
    D. Chicherin and E. Sokatchev, \( \mathcal{N}=4 \) super-Yang-Mills in LHC superspace part I: classical and quantum theory, JHEP 02 (2017) 062 [arXiv:1601.06803] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  16. [16]
    D. Chicherin and E. Sokatchev, \( \mathcal{N}=4 \) super-Yang-Mills in LHC superspace. Part II: Non-chiral correlation functions of the stress-tensor multiplet, arXiv:1601.06804 [INSPIRE].
  17. [17]
    D. Chicherin and E. Sokatchev, Composite operators and form factors in \( \mathcal{N}=4 \) SYM, arXiv:1605.01386 [INSPIRE].
  18. [18]
    D. Chicherin and E. Sokatchev, Demystifying the twistor construction of composite operators in \( \mathcal{N}=4 \) super-Yang-Mills theory, arXiv:1603.08478 [INSPIRE].
  19. [19]
    A.H. Mueller, On the Asymptotic Behavior of the Sudakov Form-factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.C. Collins, Algorithm to Compute Corrections to the Sudakov Form-factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D 24 (1981) 3281 [INSPIRE].ADSGoogle Scholar
  22. [22]
    L. Magnea and G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [INSPIRE].ADSGoogle Scholar
  23. [23]
    W.L. van Neerven, Infrared Behavior of On-shell Form-factors in a \( \mathcal{N}=4 \) Supersymmetric Yang-Mills Field Theory, Z. Phys. C 30 (1986) 595 [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form Factors in \( \mathcal{N}=4 \) Super Yang-Mills and Periodic Wilson Loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. [25]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in \( \mathcal{N}=4 \) SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of Super Form Factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV Form Factors in Superspace for \( \mathcal{N}=4 \) SYM Theory, JHEP 10(2011) 133 [arXiv:1107.5551] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in \( \mathcal{N}=4 \) SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in \( \mathcal{N}=4 \) super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in \( \mathcal{N}=4 \) SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    L.V. Bork, On NMHV form factors in \( \mathcal{N}=4 \) SYM theory from generalized unitarity, JHEP 01 (2013) 049 [arXiv:1203.2596] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. [32]
    O.T. Engelund and R. Roiban, Correlation functions of local composite operators from generalized unitarity, JHEP 03 (2013) 172 [arXiv:1209.0227] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. [33]
    H. Johansson, D.A. Kosower and K.J. Larsen, Two-Loop Maximal Unitarity with External Masses, Phys. Rev. D 87 (2013) 025030 [arXiv:1208.1754] [INSPIRE].ADSGoogle Scholar
  34. [34]
    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic Duality for Form Factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    B. Penante, B. Spence, G. Travaglini and C. Wen, On super form factors of half-BPS operators in \( \mathcal{N}=4 \) super Yang-Mills, JHEP 04 (2014) 083 [arXiv:1402.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP 08 (2014) 100 [arXiv:1406.1443] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L.V. Bork, On form factors in \( \mathcal{N}=4 \) SYM theory and polytopes, JHEP 12 (2014) 111 [arXiv:1407.5568] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Wilhelm, Amplitudes, Form Factors and the Dilatation Operator in \( \mathcal{N}=4 \) SYM Theory, JHEP 02 (2015) 149 [arXiv:1410.6309] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  39. [39]
    D. Nandan, C. Sieg, M. Wilhelm and G. Yang, Cutting through form factors and cross sections of non-protected operators in \( \mathcal{N}=4 \) SYM, JHEP 06 (2015) 156 [arXiv:1410.8485] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  40. [40]
    F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-Shell Methods for the Two-Loop Dilatation Operator and Finite Remainders, JHEP 10 (2015) 012 [arXiv:1504.06323] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  41. [41]
    L.V. Bork and A.I. Onishchenko, On soft theorems and form factors in \( \mathcal{N}=4 \) SYM theory, JHEP 12 (2015) 030 [arXiv:1506.07551] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    R. Frassek, D. Meidinger, D. Nandan and M. Wilhelm, On-shell diagrams, Graßmannians and integrability for form factors, JHEP 01 (2016) 182 [arXiv:1506.08192] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    R. Boels, B.A. Kniehl and G. Yang, Master integrals for the four-loop Sudakov form factor, Nucl. Phys. B 902 (2016) 387 [arXiv:1508.03717] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  44. [44]
    R. Huang, Q. Jin and B. Feng, Form Factor and Boundary Contribution of Amplitude, JHEP 06 (2016) 072 [arXiv:1601.06612] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  45. [45]
    A. Brandhuber, M. Kostacinska, B. Penante, G. Travaglini and D. Young, The SU(2|3) dynamic two-loop form factors, JHEP 08 (2016) 134 [arXiv:1606.08682] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  46. [46]
    L.V. Bork and A.I. Onishchenko, Grassmannians and form factors with q 2 = 0 in \( \mathcal{N}=4 \) SYM theory, JHEP 12 (2016) 076 [arXiv:1607.00503] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    L.V. Bork and A.I. Onishchenko, Wilson lines, Grassmannians and Gauge Invariant Off-shell Amplitudes in \( \mathcal{N}=4 \) SYM, arXiv:1607.02320 [INSPIRE].
  48. [48]
    S. He and Y. Zhang, Connected formulas for amplitudes in standard model, arXiv:1607.02843 [INSPIRE].
  49. [49]
    S. Caron-Huot and M. Wilhelm, Renormalization group coefficients and the S-matrix, JHEP 12 (2016) 010 [arXiv:1607.06448] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Brandhuber, E. Hughes, R. Panerai, B. Spence and G. Travaglini, The connected prescription for form factors in twistor space, JHEP 11 (2016) 143 [arXiv:1608.03277] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  51. [51]
    S. He and Z. Liu, A note on connected formula for form factors, JHEP 12 (2016) 006 [arXiv:1608.04306] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Yang, Color-kinematics duality and Sudakov form factor at five loops for \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 271602 [arXiv:1610.02394] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    T. Ahmed, P. Banerjee, P.K. Dhani, N. Rana, V. Ravindran and S. Seth, Konishi Form Factor at Three Loop in \( \mathcal{N}=4 \) SYM, arXiv:1610.05317 [INSPIRE].
  54. [54]
    F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-Loop SL(2) Form Factors and Maximal Transcendentality, JHEP 12 (2016) 090 [arXiv:1610.06567] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  55. [55]
    L.V. Bork and A.I. Onishchenko, Grassmannian Integral for General Gauge Invariant Off-shell Amplitudes in \( \mathcal{N}=4 \) SYM, arXiv:1610.09693 [INSPIRE].
  56. [56]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  57. [57]
    J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  58. [58]
    Z. Gao and G. Yang, Y-system for form factors at strong coupling in AdS 5 and with multi-operator insertions in AdS 3, JHEP 06 (2013) 105 [arXiv:1303.2668] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    M. Wilhelm, Form factors and the dilatation operator in \( \mathcal{N}=4 \) super Yang-Mills theory and its deformations, arXiv:1603.01145 [INSPIRE].
  60. [60]
    B. Penante, On-shell methods for off-shell quantities in \( \mathcal{N}=4 \) Super Yang-Mills: from scattering amplitudes to form factors and the dilatation operator, arXiv:1608.01634 [INSPIRE].
  61. [61]
    T. Adamo, Twistor actions for gauge theory and gravity, arXiv:1308.2820 [INSPIRE].
  62. [62]
    V.P. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  64. [64]
    T. Adamo, M. Bullimore, L. Mason and D. Skinner, A proof of the Supersymmetric Correlation Function/Wilson Loop Correspondence, JHEP 08 (2011) 076 [arXiv:1103.4119] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    N. Beisert, The dilatation operator of \( \mathcal{N}=4 \) super Yang-Mills theory and integrability, Phys. Rept. 405 (2004) 1 [hep-th/0407277] [INSPIRE].ADSCrossRefMathSciNetzbMATHGoogle Scholar
  66. [66]
    J.A. Minahan, Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in \( \mathcal{N}=4 \) Super Yang-Mills, Lett. Math. Phys. 99 (2012) 33 [arXiv:1012.3983] [INSPIRE].
  67. [67]
    D. Nandan and C. Wen, Generating All Tree Amplitudes in \( \mathcal{N}=4 \) SYM by Inverse Soft Limit, JHEP 08 (2012) 040 [arXiv:1204.4841] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Laura Koster
    • 1
  • Vladimir Mitev
    • 2
  • Matthias Staudacher
    • 1
  • Matthias Wilhelm
    • 3
  1. 1.Institut für Mathematik, Institut für Physik und IRIS AdlershofHumboldt-Universität zu BerlinBerlinGermany
  2. 2.PRISMA Cluster of Excellence, Institut für Physik, WA THEPJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Niels Bohr InstituteCopenhagen UniversityCopenhagen ØDenmark

Personalised recommendations