LHC vector resonance searches in the \( t\overline{t}Z \) final state

  • Mihailo Backović
  • Thomas FlackeEmail author
  • Bithika Jain
  • Seung J. Lee
Open Access
Regular Article - Theoretical Physics


LHC searches for BSM resonances in l + l , jj, \( t\overline{t} \) , γγ and VV final states have so far not resulted in discovery of new physics. Current results set lower limits on mass scales of new physics resonances well into the \( \mathcal{O}(1) \) TeV range, assuming that the new resonance decays dominantly to a pair of Standard Model particles. While the SM pair searches are a vital probe of possible new physics, it is important to re-examine the scope of new physics scenarios probed with such final states. Scenarios where new resonances decay dominantly to final states other than SM pairs, even though well theoretically motivated, lie beyond the scope of SM pair searches. In this paper we argue that LHC searches for (vector) resonances beyond two particle final states would be useful complementary probes of new physics scenarios. As an example, we consider a class of composite Higgs models, and identify specific model parameter points where the color singlet, electrically neutral vector resonance ρ0 decays dominantly not to a pair of SM particles, but to a fermionic top partner T f1 and a top quark, with T f1tZ. We show that dominant decays of ρ 0T f1 t in the context of Composite Higgs models are possible even when the decay channel to a pair of T f1 is kinematically open. Our analysis deals with scenarios where both m ρ and \( {m}_T{{}_{{}_f}}_{{}_1} \) are of \( \mathcal{O}(1) \) TeV, leading to highly boosted \( t\overline{t}Z \) final state topologies. We show that the particular composite Higgs scenario we consider is discoverable at the LHC13 with as little as 30 fb−1, while being allowed by other existing experimental constraints.


Beyond Standard Model Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
  2. [2]
    EXO Summary for ICHEP 2016: Resonances, extra dimensions, etc., limits_ICHEP_2016.001.png (2016).
  3. [3]
    H.-C. Cheng, B.A. Dobrescu and C.T. Hill, Electroweak symmetry breaking and extra dimensions, Nucl. Phys. B 589 (2000) 249 [hep-ph/9912343] [INSPIRE].
  4. [4]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  5. [5]
    B.A. Dobrescu, K. Kong and R. Mahbubani, Prospects for top-prime quark discovery at the Tevatron, JHEP 06 (2009) 001 [arXiv:0902.0792] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Kong, M. McCaskey and G.W. Wilson, Multi-lepton signals from the top-prime quark at the LHC, JHEP 04 (2012) 079 [arXiv:1112.3041] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
  8. [8]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single Vectorlike Quark Production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Agashe et al., LHC Signals for Warped Electroweak Neutral Gauge Bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Redi, V. Sanz, M. de Vries and A. Weiler, Strong Signatures of Right-Handed Compositeness, JHEP 08 (2013) 008 [arXiv:1305.3818] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Vignaroli, New W’ signals at the LHC, Phys. Rev. D 89 (2014) 095027 [arXiv:1404.5558] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Chala, J. Juknevich, G. Perez and J. Santiago, The Elusive Gluon, JHEP 01 (2015) 092 [arXiv:1411.1771] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Greco and D. Liu, Hunting composite vector resonances at the LHC: naturalness facing data, JHEP 12 (2014) 126 [arXiv:1410.2883] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Barducci and C. Delaunay, Bounding wide composite vector resonances at the LHC, JHEP 02 (2016) 055 [arXiv:1511.01101] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    H. Georgi and A. Pais, Calculability and Naturalness in Gauge Theories, Phys. Rev. D 10 (1974) 539 [INSPIRE].ADSGoogle Scholar
  19. [19]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
  22. [22]
    R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE].
  23. [23]
    S. Rychkov, EWSB Theory on the Eve of Higgs Boson Exclusion/Discovery, PoS(EPS-HEP2011)029 [arXiv:1109.1180] [INSPIRE].
  24. [24]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961].CrossRefzbMATHGoogle Scholar
  25. [25]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  26. [26]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light Top Partners for a Light Composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Redi and A. Tesi, Implications of a Light Higgs in Composite Models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Marzocca, M. Serone and J. Shu, General Composite Higgs Models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Pomarol and F. Riva, The Composite Higgs and Light Resonance Connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  34. [34]
    C.H. Llewellyn Smith, High-Energy Behavior and Gauge Symmetry, Phys. Lett. B 46 (1973) 233 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D.A. Dicus and V.S. Mathur, Upper bounds on the values of masses in unified gauge theories, Phys. Rev. D 7 (1973) 3111 [INSPIRE].ADSGoogle Scholar
  36. [36]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Uniqueness of spontaneously broken gauge theories, Phys. Rev. Lett. 30 (1973) 1268 [Erratum ibid. 31 (1973) 572] [INSPIRE].
  37. [37]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].
  38. [38]
    B.W. Lee, C. Quigg and H.B. Thacker, The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  40. [40]
    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 12 (2016) 135 [arXiv:1608.01509] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Contino and M. Salvarezza, One-loop effects from spin-1 resonances in Composite Higgs models, JHEP 07 (2015) 065 [arXiv:1504.02750] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    M. Backovic, T. Flacke, J.H. Kim and S.J. Lee, Search Strategies for TeV Scale Fermionic Top Partners with Charge 2/3, JHEP 04 (2016) 014 [arXiv:1507.06568] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Backović, T. Flacke, J.H. Kim and S.J. Lee, Discovering heavy new physics in boosted Z channels: Zl + l vs \( Z\to \nu \overline{\nu} \), Phys. Rev. D 92 (2015) 011701 [arXiv:1501.07456] [INSPIRE].ADSGoogle Scholar
  48. [48]
    M. Backović, T. Flacke, S.J. Lee and G. Perez, LHC Top Partner Searches Beyond the 2 TeV Mass Region, JHEP 09 (2015) 022 [arXiv:1409.0409] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting Top Partner Searches in Composite Higgs Models, Phys. Rev. D 89 (2014) 075001 [arXiv:1308.6601] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Reuter and M. Tonini, Top Partner Discovery in the TtZ channel at the LHC, JHEP 01 (2015) 088 [arXiv:1409.6962] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the Interpretation of Top Partners Searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    B. Gripaios, T. Müller, M.A. Parker and D. Sutherland, Search Strategies for Top Partners in Composite Higgs models, JHEP 08 (2014) 171 [arXiv:1406.5957] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    N. Gutierrez Ortiz, J. Ferrando, D. Kar and M. Spannowsky, Reconstructing singly produced top partners in decays to W b, Phys. Rev. D 90 (2014) 075009 [arXiv:1403.7490] [INSPIRE].ADSGoogle Scholar
  54. [54]
    C. Han, A. Kobakhidze, N. Liu, L. Wu and B. Yang, Constraining Top partner and Naturalness at the LHC and TLEP, Nucl. Phys. B 890 (2014) 388 [arXiv:1405.1498] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Low, A. Tesi and L.-T. Wang, Composite spin-1 resonances at the LHC, Phys. Rev. D 92 (2015) 085019 [arXiv:1507.07557] [INSPIRE].ADSGoogle Scholar
  56. [56]
    CMS collaboration, Search for single production of vector-like quarks decaying into final states with a Z boson and a top or a bottom quark, CMS-PAS-B2G-16-001 (2016).
  57. [57]
    G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    M. Carena, L. Da Rold and E. Pontón, Minimal Composite Higgs Models at the LHC, JHEP 06 (2014) 159 [arXiv:1402.2987] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    R. Grober, M. Muhlleitner and M. Spira, Signs of Composite Higgs Pair Production at Next-to-Leading Order, JHEP 06 (2016) 080 [arXiv:1602.05851] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  61. [61]
    A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev. D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].
  63. [63]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett. 110 (2013) 181801 [arXiv:1212.6769] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Azatov, R. Contino, A. Di Iura and J. Galloway, New Prospects for Higgs Compositeness in h, Phys. Rev. D 88 (2013) 075019 [arXiv:1308.2676] [INSPIRE].ADSGoogle Scholar
  65. [65]
    D. Bunk, J. Hubisz and B. Jain, Higgs Decays in Gauge Extensions of the Standard Model, Phys. Rev. D 89 (2014) 035014 [arXiv:1309.7988] [INSPIRE].ADSGoogle Scholar
  66. [66]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T Constraints on Electroweak Strongly-Coupled Models with a Light Higgs, JHEP 01 (2014) 157 [arXiv:1310.3121] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].ADSGoogle Scholar
  69. [69]
    M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  70. [70]
    O. Matsedonskyi, On Flavour and Naturalness of Composite Higgs Models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    ATLAS collaboration, Search for new high-mass resonances in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-045 (2016).
  72. [72]
    CMS collaboration, Search for a high-mass resonance decaying into a dilepton final state in 13 fb −1 of pp collisions at \( \sqrt{s}=13 \) T eV , CMS-PAS-EXO-16-031 (2016).
  73. [73]
    ATLAS collaboration, Search for heavy particles decaying to pairs of highly-boosted top quarks using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-014 (2016).
  74. [74]
    CMS collaboration, Search for \( t\overline{t} \) resonances in boosted semileptonic final states in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-15-002 (2015).
  75. [75]
    ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets with the ATLAS detector with 2015 and 2016 data, ATLAS-CONF-2016-060 (2016).
  76. [76]
    ATLAS collaboration, Search for New Phenomena in Dijet Events with the ATLAS Detector at \( \sqrt{s}=13 \) TeV with 2015 and 2016 data, ATLAS-CONF-2016-069 (2016).
  77. [77]
    CMS collaboration, Search for narrow resonances decaying to dijets in pp collisions at \( \sqrt{s}=13 \) TeV using 12.9 fb −1, CMS-PAS-EXO-16-032 (2016).
  78. [78]
    ATLAS collaboration, Search for diboson resonance production in the ℓνqq final state using pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-062 (2016).
  79. [79]
    ATLAS collaboration, Search for a high-mass Higgs boson decaying to a pair of W bosons in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-074 (2016).
  80. [80]
    ATLAS collaboration, Search for resonances with boson-tagged jets in 15.5 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV collected with the ATLAS detector, ATLAS-CONF-2016-055 (2016).
  81. [81]
    CMS collaboration, Search for massive resonances decaying into pairs of boosted W and Z bosons at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-002 (2015).
  82. [82]
    CMS collaboration, Search for new resonances decaying to W W /W Zℓνqq, CMS-PAS-B2G-16-020 (2016).
  83. [83]
    CMS collaboration, Search for top quark partners with charge 5/3 at \( \sqrt{s}=13 \) TeV, CMS-PAS-B2G-15-006 (2015).
  84. [84]
    CMS collaboration, Search for vector-like charge 2/3 T quarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012003 [arXiv:1509.04177] [INSPIRE].
  85. [85]
    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].
  86. [86]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].
  88. [88]
    CMS collaboration, Search for single production of vector-like quarks decaying into final states with a Z boson and a top or a bottom quark, CMS-PAS-B2G-16-001 (2016).
  89. [89]
    O. Matsedonskyi, G. Panico and A. Wulzer, Top Partners Searches and Composite Higgs Models, JHEP 04 (2016) 003 [arXiv:1512.04356] [INSPIRE].ADSGoogle Scholar
  90. [90]
    C. Delaunay, T. Flacke, J. Gonzalez-Fraile, S.J. Lee, G. Panico and G. Perez, Light Non-degenerate Composite Partners at the LHC, JHEP 02 (2014) 055 [arXiv:1311.2072] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  93. [93]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  94. [94]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    CMS collaboration, Boosted Top Jet Tagging at CMS, CMS-PAS-JME-13-007 (2013).
  96. [96]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    L.G. Almeida et al., Three-particle templates for a boosted Higgs boson, Phys. Rev. D 85 (2012) 114046 [arXiv:1112.1957] [INSPIRE].ADSGoogle Scholar
  98. [98]
    M. Backovic, J. Juknevich and G. Perez, Boosting the Standard Model Higgs Signal with the Template Overlap Method, JHEP 07 (2013) 114 [arXiv:1212.2977] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs Shapes, Eur. Phys. J. C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    A. Abdesselam et al., Boosted objects: A Probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    P. Nath et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].CrossRefGoogle Scholar
  104. [104]
    L.G. Almeida, R. Alon and M. Spannowsky, Structure of Fat Jets at the Tevatron and Beyond, Eur. Phys. J. C 72 (2012) 2113 [arXiv:1110.3684] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    T. Plehn and M. Spannowsky, Top Tagging, J. Phys. G 39 (2012) 083001 [arXiv:1112.4441] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  108. [108]
    D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].ADSGoogle Scholar
  109. [109]
    M. Jankowiak and A.J. Larkoski, Jet Substructure Without Trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  112. [112]
    M. Backović and J. Juknevich, TemplateTagger v1.0.0: A Template Matching Tool for Jet Substructure, Comput. Phys. Commun. 185 (2014) 1322 [arXiv:1212.2978] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    M. Backovic, O. Gabizon, J. Juknevich, G. Perez and Y. Soreq, Measuring boosted tops in semi-leptonic \( t\overline{t} \) events for the standard model and beyond, JHEP 04 (2014) 176 [arXiv:1311.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    A. Hook, M. Jankowiak and J.G. Wacker, Jet Dipolarity: Top Tagging with Color Flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    J. Thaler and K. Van Tilburg, Identifying Boosted Objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by Minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  119. [119]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template Overlap Method for Massive Jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].ADSGoogle Scholar
  120. [120]
    V. Rentala, W. Shepherd and T.M.P. Tait, Tagging Boosted Ws with Wavelets, JHEP 08 (2014) 042 [arXiv:1404.1929] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    L.G. Almeida, M. Backović, M. Cliche, S.J. Lee and M. Perelstein, Playing Tag with ANN: Boosted Top Identification with Pattern Recognition, JHEP 07 (2015) 086 [arXiv:1501.05968] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    I. Moult, L. Necib and J. Thaler, New Angles on Energy Correlation Functions, JHEP 12 (2016) 153 [arXiv:1609.07483] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet Substructure Classification in High-Energy Physics with Deep Neural Networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].ADSGoogle Scholar
  126. [126]
    L. de Oliveira, M. Kagan, L. Mackey, B. Nachman and A. Schwartzman, Jet-images — deep learning edition, JHEP 07 (2016) 069 [arXiv:1511.05190] [INSPIRE].CrossRefGoogle Scholar
  127. [127]
    A.J. Larkoski, I. Moult and D. Neill, Building a Better Boosted Top Tagger, Phys. Rev. D 91 (2015) 034035 [arXiv:1411.0665] [INSPIRE].ADSGoogle Scholar
  128. [128]
    CMS collaboration, Top Tagging with New Approaches, CMS-PAS-JME-15-002 (2015).
  129. [129]
    CMS collaboration, V Tagging Observables and Correlations, CMS-PAS-JME-14-002 (2014).

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Center for Cosmology, Particle Physics and Phenomenology - CP3Universite Catholique de LouvainLouvain-la-neuveBelgium
  2. 2.Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS)DaejeonKorea
  3. 3.Department of PhysicsKorea UniversitySeoulKorea
  4. 4.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations