Precision neutrino experiments vs the Littlest Seesaw

  • Peter Ballett
  • Stephen F. KingEmail author
  • Silvia Pascoli
  • Nick W. Prouse
  • TseChun Wang
Open Access
Regular Article - Theoretical Physics


We study to what extent upcoming precision neutrino oscillation experiments will be able to exclude one of the most predictive models of neutrino mass and mixing: the Littlest Seesaw. We show that this model provides a good fit to current data, predicting eight observables from two input parameters, and provide new assessments of its predictions and their correlations. We then assess the ability to exclude this model using simulations of upcoming neutrino oscillation experiments including the medium-distance reactor experiments JUNO and RENO-50 and the long-baseline accelerator experiments DUNE and T2HK. We find that an accurate determination of the currently least well measured parameters, namely the atmospheric and solar angles and the CP phase δ, provide crucial independent tests of the model. For θ 13 and the two mass-squared differences, however, the model’s exclusion requires a combination of measurements coming from a varied experimental programme. Our results show that the synergy and complementarity of future experiments will play a vital role in efficiently discriminating between predictive models of neutrino flavour, and hence, towards advancing our understanding of neutrino oscillations in the context of the flavour puzzle of the Standard Model.


Neutrino Physics Solar and Atmospheric Neutrinos 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T. Ohlsson ed., Special Issue on “Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015”, Nucl. Phys. B 908 (2016) 1.Google Scholar
  2. [2]
    S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.F. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204] [INSPIRE].
  4. [4]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.F. King, Models of Neutrino Mass, Mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  8. [8]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  9. [9]
    T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  10. [10]
    S.L. Glashow, The Future of Elementary Particle Physics, in proceedings of Cargese Summer Institute: Quarks and Leptons, Cargese, France, 9-29 July 1979 [NATO Sci. Ser. B 61 (1980) 687] [INSPIRE].
  11. [11]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  13. [13]
    S.F. King, Neutrino Mass and Mixing in the Seesaw Playground, Nucl. Phys. B 908 (2016) 456 [arXiv:1511.03831] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [INSPIRE].
  15. [15]
    S.F. King, Constructing the large mixing angle MNS matrix in seesaw models with right-handed neutrino dominance, JHEP 09 (2002) 011 [hep-ph/0204360] [INSPIRE].
  16. [16]
    P.H. Frampton, S.L. Glashow and T. Yanagida, Cosmological sign of neutrino CP-violation, Phys. Lett. B 548 (2002) 119 [hep-ph/0208157] [INSPIRE].
  17. [17]
    K. Harigaya, M. Ibe and T.T. Yanagida, Seesaw Mechanism with Occam’s Razor, Phys. Rev. D 86 (2012) 013002 [arXiv:1205.2198] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.F. King, Minimal predictive see-saw model with normal neutrino mass hierarchy, JHEP 07 (2013) 137 [arXiv:1304.6264] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete A 4× SU(5) SUSY GUT, JHEP 06 (2015) 141 [arXiv:1503.03306] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Towards a complete Δ(27) × SO(10) SUSY GUT, Phys. Rev. D 94 (2016) 016006 [arXiv:1512.00850] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. Björkeroth, F.J. de Anda, I. de Medeiros Varzielas and S.F. King, Leptogenesis in minimal predictive seesaw models, JHEP 10 (2015) 104 [arXiv:1505.05504] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.F. King, Atmospheric and solar neutrinos with a heavy singlet, Phys. Lett. B 439 (1998) 350 [hep-ph/9806440] [INSPIRE].
  23. [23]
    S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [INSPIRE].
  24. [24]
    S.F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].
  25. [25]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Trimaximal mixing with predicted θ 13 from a new type of constrained sequential dominance, Nucl. Phys. B 856 (2012) 328 [arXiv:1108.4278] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    S.F. King, Minimal see-saw model predicting best fit lepton mixing angles, Phys. Lett. B 724 (2013) 92 [arXiv:1305.4846] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.F. King, A model of quark and lepton mixing, JHEP 01 (2014) 119 [arXiv:1311.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.F. King, A to Z of Flavour with Pati-Salam, JHEP 08 (2014) 130 [arXiv:1406.7005] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Björkeroth and S.F. King, Testing constrained sequential dominance models of neutrinos, J. Phys. G 42 (2015) 125002 [arXiv:1412.6996] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.F. King, Littlest Seesaw, JHEP 02 (2016) 085 [arXiv:1512.07531] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.F. King and C. Luhn, Littlest Seesaw model from S 4× U(1), JHEP 09 (2016) 023 [arXiv:1607.05276] [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Z.-z. Xing and S. Zhou, Tri-bimaximal Neutrino Mixing and Flavor-dependent Resonant Leptogenesis, Phys. Lett. B 653 (2007) 278 [hep-ph/0607302] [INSPIRE].
  34. [34]
    C.H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing, Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    X.-G. He and A. Zee, Minimal Modification to Tri-bimaximal Mixing, Phys. Rev. D 84 (2011) 053004 [arXiv:1106.4359] [INSPIRE].ADSGoogle Scholar
  36. [36]
    W. Rodejohann and H. Zhang, Simple two Parameter Description of Lepton Mixing, Phys. Rev. D 86 (2012) 093008 [arXiv:1207.1225] [INSPIRE].ADSGoogle Scholar
  37. [37]
    I. de Medeiros Varzielas and L. Lavoura, Flavour models for T M 1 lepton mixing, J. Phys. G 40 (2013) 085002 [arXiv:1212.3247] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W. Grimus, Discrete symmetries, roots of unity and lepton mixing, J. Phys. G 40 (2013) 075008 [arXiv:1301.0495] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.H. Albright and W. Rodejohann, Comparing Trimaximal Mixing and Its Variants with Deviations from Tri-bimaximal Mixing, Eur. Phys. J. C 62 (2009) 599 [arXiv:0812.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
  41. [41]
    C. Luhn, Trimaximal TM 1 neutrino mixing in S 4 with spontaneous CP-violation, Nucl. Phys. B 875 (2013) 80 [arXiv:1306.2358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum alignment in S 4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Feruglio, C. Hagedorn and R. Ziegler, A realistic pattern of lepton mixing and masses from S 4 and CP, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Right Unitarity Triangles and Tri-Bimaximal Mixing from Discrete Symmetries and Unification, Nucl. Phys. B 850 (2011) 477 [arXiv:1103.5930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Boudjemaa and S.F. King, Deviations from Tri-bimaximal Mixing: Charged Lepton Corrections and Renormalization Group Running, Phys. Rev. D 79 (2009) 033001 [arXiv:0808.2782] [INSPIRE].ADSGoogle Scholar
  46. [46]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Iwamoto, Recent Results from T2K and Future Prospects, talk given at The 38th International Conference on High Energy Physics, Chicago, U.S.A., 3-10 August 2016.Google Scholar
  48. [48]
    P. Vahle, New results from NOvA, talk given at The XXVII International Conference on Neutrino Physics and Astrophysics, London, U.K., 4-9 July 2016.Google Scholar
  49. [49]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  51. [51]
    F. Borzumati and A. Masiero, Large Muon and electron Number Violations in Supergravity Theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].
  53. [53]
    S.F. King and M. Oliveira, Lepton flavor violation in string inspired models, Phys. Rev. D 60 (1999) 035003 [hep-ph/9804283] [INSPIRE].
  54. [54]
    M. Dimou, S.F. King and C. Luhn, Approaching Minimal Flavour Violation from an SU(5) × S 4 × U(1) SUSY GUT, JHEP 02 (2016) 118 [arXiv:1511.07886] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Dimou, S.F. King and C. Luhn, Phenomenological implications of an SU(5) × S 4 × U(1) SUSY GUT of flavor, Phys. Rev. D 93 (2016) 075026 [arXiv:1512.09063] [INSPIRE].ADSGoogle Scholar
  56. [56]
    T. Blazek and S.F. King, Lepton flavor violation in the constrained MSSM with natural neutrino mass hierarchy, Nucl. Phys. B 662 (2003) 359 [hep-ph/0211368] [INSPIRE].
  57. [57]
    S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A4 and S4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing atmospheric mixing sum rules at precision neutrino facilities, Phys. Rev. D 89 (2014) 016016 [arXiv:1308.4314] [INSPIRE].ADSGoogle Scholar
  59. [59]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Precision measurements of θ 12 for testing models of discrete leptonic flavour symmetries, J. Phys. Conf. Ser. 598 (2015) 012014 [arXiv:1406.0308] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Hyper-Kamiokande proto-collaboration, K. Abe et al., Hyper-Kamiokande Design Report, KEK Preprint 2016-21, ICRR-Report-701-2016-1 (2016) [] [INSPIRE].
  62. [62]
    Hyper-Kamiokande proto-collaboration, K. Abe et al., Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
  63. [63]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). Volume 1: The LBNF and DUNE Projects, arXiv:1601.05471 [INSPIRE].
  64. [64]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE). Volume 2: The Physics Program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].
  65. [65]
    Daya Bay collaboration, X. Guo et al., A precision measurement of the neutrino mixing angle θ 13 using reactor antineutrinos at Daya-Bay, hep-ex/0701029 [INSPIRE].
  66. [66]
    J. Cao and K.-B. Luk, An overview of the Daya Bay Reactor Neutrino Experiment, Nucl. Phys. B 908 (2016) 62 [arXiv:1605.01502] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    JUNO collaboration, Z. Djurcic et al., JUNO Conceptual Design Report, arXiv:1508.07166 [INSPIRE].
  68. [68]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  69. [69]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  70. [70]
    P. Ballett, S.F. King, S. Pascoli, N.W. Prouse and T. Wang, Sensitivities and synergies of DUNE and T2HK, arXiv:1612.07275 [INSPIRE].
  71. [71]
    S.-B. Kim, New results from RENO and prospects with RENO-50, Nucl. Part. Phys. Proc. 265-266 (2015) 93 [arXiv:1412.2199] [INSPIRE].CrossRefGoogle Scholar
  72. [72]
    F. Ardellier et al., Letter of intent for Double-CHOOZ: A search for the mixing angle θ 13, hep-ex/0405032 [INSPIRE].
  73. [73]
    RENO collaboration, J.K. Ahn et al., RENO: An Experiment for Neutrino Oscillation Parameter θ 13 Using Reactor Neutrinos at Yonggwang, arXiv:1003.1391 [INSPIRE].
  74. [74]
    S.S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, Ann. Math. Statist. 9 (1938) 60.CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Peter Ballett
    • 1
  • Stephen F. King
    • 2
    Email author
  • Silvia Pascoli
    • 1
  • Nick W. Prouse
    • 2
    • 3
  • TseChun Wang
    • 1
  1. 1.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamUnited Kingdom
  2. 2.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom
  3. 3.Particle Physics Research Centre, School of Physics and AstronomyQueen Mary University of LondonLondonUnited Kingdom

Personalised recommendations