Refining the boundaries of the classical de Sitter landscape

Open Access
Regular Article - Theoretical Physics


We derive highly constraining no-go theorems for classical de Sitter backgrounds of string theory, with parallel sources; this should impact the embedding of cosmological models. We study ten-dimensional vacua of type II supergravities with parallel and backreacted orientifold O p -planes and D p -branes, on four-dimensional de Sitter spacetime times a compact manifold. Vacua for p = 3, 7 or 8 are completely excluded, and we obtain tight constraints for p = 4, 5, 6. This is achieved through the derivation of an enlightening expression for the four-dimensional Ricci scalar. Further interesting expressions and no-go theorems are obtained. The paper is self-contained so technical aspects, including conventions, might be of more general interest.


Flux compactifications Supergravity Models Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    BICEP2, Planck collaboration, P.A.R. Ade et al., Joint Analysis of BICEP2/KeckArray and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  3. [3]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys. 594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
  4. [4]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  5. [5]
    X. Chen, C. Dvorkin, Z. Huang, M.H. Namjoo and L. Verde, The future of primordial features with large-scale structure surveys, JCAP 11 (2016) 014 [arXiv:1605.09365] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.L. Parameswaran and I. Zavala, Prospects for primordial gravitational waves in string inflation, Int. J. Mod. Phys. D 25 (2016) 1644011 [arXiv:1606.02537] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D. Andriot, A no-go theorem for monodromy inflation, JCAP 03 (2016) 025 [arXiv:1510.02005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  10. [10]
    I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    I. Bena, J. Blabäck and D. Turton, Loop corrections to the antibrane potential, JHEP 07 (2016) 132 [arXiv:1602.05959] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S.P. de Alwis, Constraints on Dbar uplifts, JHEP 11 (2016) 045 [arXiv:1605.06456] [INSPIRE].Google Scholar
  13. [13]
    N. Cabo Bizet and S. Hirano, Revisiting constraints on uplifts to de Sitter vacua, arXiv:1607.01139 [INSPIRE].
  14. [14]
    S.R. Green, E.J. Martinec, C. Quigley and S. Sethi, Constraints on string cosmology, Class. Quant. Grav. 29 (2012) 075006 [arXiv:1110.0545] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    F.F. Gautason, D. Junghans and M. Zagermann, On cosmological constants from α-corrections, JHEP 06 (2012) 029 [arXiv:1204.0807] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Kutasov, T. Maxfield, I. Melnikov and S. Sethi, Constraining de Sitter space in string theory, Phys. Rev. Lett. 115 (2015) 071305 [arXiv:1504.00056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    C. Quigley, Gaugino condensation and the cosmological constant, JHEP 06 (2015) 104 [arXiv:1504.00652] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    G.W. Gibbons, Aspects of supergravity theories, XV GIFT Seminar on Supersymmetry and Supergravity, June 4–11, Gerona, Spain (1984).Google Scholar
  19. [19]
    B. de Wit, D.J. Smit and N.D. Hari Dass, Residual supersymmetry of compactified D = 10 supergravity, Nucl. Phys. B 283 (1987) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    P.K. Townsend, Cosmic acceleration and M-theory, hep-th/0308149 [INSPIRE].
  22. [22]
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on Type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the cosmology of Type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in massive type IIA supergravity with metric fluxes, Phys. Rev. D 79 (2009) 086011 [arXiv:0812.3886] [INSPIRE].ADSGoogle Scholar
  26. [26]
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    C. Caviezel, T. Wrase and M. Zagermann, Moduli stabilization and cosmology of Type IIB on SU(2)-structure orientifolds, JHEP 04 (2010) 011 [arXiv:0912.3287] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    T. Wrase and M. Zagermann, On classical de Sitter vacua in string theory, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    C.P. Burgess, A. Maharana, L. van Nierop, A.A. Nizami and F. Quevedo, On brane back-reaction and de Sitter solutions in higher-dimensional supergravity, JHEP 04 (2012) 018 [arXiv:1109.0532] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    T. Van Riet, On classical de Sitter solutions in higher dimensions, Class. Quant. Grav. 29 (2012) 055001 [arXiv:1111.3154] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    F.F. Gautason, D. Junghans and M. Zagermann, Cosmological constant, near brane behavior and singularities, JHEP 09 (2013) 123 [arXiv:1301.5647] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic classes of metastable de Sitter vacua, JHEP 10 (2014) 011 [arXiv:1406.4866] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    D. Junghans, Backreaction of localised sources in string compactifications, arXiv:1309.5990 [INSPIRE].
  37. [37]
    U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, de Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].
  39. [39]
    L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    G. Shiu and Y. Sumitomo, Stability constraints on classical de Sitter vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    D. Junghans, Tachyons in classical de Sitter vacua, JHEP 06 (2016) 132 [arXiv:1603.08939] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    D. Andriot, J. Blabäck and T. Van Riet, Minkowski flux vacua of type-II supergravities, Phys. Rev. Lett. 118 (2017) 011603 [arXiv:1609.00729] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    D. Andriot, New supersymmetric vacua on solvmanifolds, JHEP 02 (2016) 112 [arXiv:1507.00014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    G. Villadoro and F. Zwirner, On general flux backgrounds with localized sources, JHEP 11 (2007) 082 [arXiv:0710.2551] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  51. [51]
    P. Koerber and L. Martucci, D-branes on AdS flux compactifications, JHEP 01 (2008) 047 [arXiv:0710.5530] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M. Berasaluce-González, G. Honecker and A. Seifert, Towards geometric D6-brane model building on non-factorisable toroidal \( {\mathrm{\mathbb{Z}}}_4 \) -orbifolds, JHEP 08 (2016) 062 [arXiv:1606.04926] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Andriot, Heterotic string from a higher dimensional perspective, Nucl. Phys. B 855 (2012) 222 [arXiv:1102.1434] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    E. Bergshoeff, R. Kallosh, T. Ort´in, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].
  55. [55]
    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    E. Bergshoeff and P.K. Townsend, Super D-branes, Nucl. Phys. B 490 (1997) 145 [hep-th/9611173] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  59. [59]
    P. Koerber, Lectures on generalized complex geometry for physicists, Fortsch. Phys. 59 (2011) 169 [arXiv:1006.1536] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    P. Koerber, Stable D-branes, calibrations and generalized Calabi-Yau geometry, JHEP 08 (2005) 099 [hep-th/0506154] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    P. Koerber and L. Martucci, Deformations of calibrated D-branes in flux generalized complex manifolds, JHEP 12 (2006) 062 [hep-th/0610044] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    F. Gmeiner and F. Witt, Calibrations and T-duality, Commun. Math. Phys. 283 (2008) 543 [math/0605710] [INSPIRE].
  63. [63]
    L. Martucci, Electrified branes, JHEP 02 (2012) 097 [arXiv:1110.0627] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].
  65. [65]
    D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities and more on backgrounds with non-geometric fluxes, JHEP 07 (2014) 059 [arXiv:1402.5972] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutPotsdam-GolmGermany
  2. 2.Institut für Mathematik, Humboldt-Universität zu Berlin, IRIS-AdlershofBerlinGermany
  3. 3.Institut de Physique Théorique, Université Paris Saclay, CEA, CNRSGif sur YvetteFrance

Personalised recommendations