The N2HDM under theoretical and experimental scrutiny

  • Margarete Mühlleitner
  • Marco O. P. Sampaio
  • Rui Santos
  • Jonas Wittbrodt
Open Access
Regular Article - Theoretical Physics

Abstract

The N2HDM is based on the CP-conserving 2HDM extended by a real scalar singlet field. Its enlarged parameter space and its fewer symmetry conditions as compared to supersymmetric models allow for an interesting phenomenology compatible with current experimental constraints, while adding to the 2HDM sector the possibility of Higgs-to-Higgs decays with three different Higgs bosons. In this paper the N2HDM is subjected to detailed scrutiny. Regarding the theoretical constraints we implement tests of tree-level perturbativity and vacuum stability. Moreover, we present, for the first time, a thorough analysis of the global minimum of the N2HDM. The model and the theoretical constraints have been implemented in ScannerS, and we provide N2HDECAY, a code based on HDECAY, for the computation of the N2HDM branching ratios and total widths including the state-of-the-art higher order QCD corrections and off-shell decays. We then perform an extensive parameter scan in the N2HDM parameter space, with all theoretical and experimental constraints applied, and analyse its allowed regions. We find that large singlet admixtures are still compatible with the Higgs data and investigate which observables will allow to restrict the singlet nature most effectively in the next runs of the LHC. Similarly to the 2HDM, the N2HDM exhibits a wrong-sign parameter regime, which will be constrained by future Higgs precision measurements.

Keywords

Beyond Standard Model Higgs Physics 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    C. Englert et al., Precision measurements of Higgs couplings: implications for new physics scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  5. [5]
    H. Terazawa, K. Akama and Y. Chikashige, Unified model of the Nambu-Jona-Lasinio type for all elementary particle forces, Phys. Rev. D 15 (1977) 480 [INSPIRE].ADSGoogle Scholar
  6. [6]
    H. Terazawa, Subquark model of leptons and quarks, Phys. Rev. D 22 (1980) 184 [INSPIRE].ADSGoogle Scholar
  7. [7]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE].ADSGoogle Scholar
  10. [10]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  15. [15]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  16. [16]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  17. [17]
    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
  18. [18]
    ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [arXiv:1506.05669] [INSPIRE].
  19. [19]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  20. [20]
    ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, Eur. Phys. J. C 76 (2016) 6 [arXiv:1507.04548] [INSPIRE].
  21. [21]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  22. [22]
    T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  23. [23]
    G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D 79 (2009) 023521 [arXiv:0811.0658] [INSPIRE].ADSGoogle Scholar
  25. [25]
    B. Grzadkowski and P. Osland, Tempered two-Higgs-doublet model, Phys. Rev. D 82 (2010) 125026 [arXiv:0910.4068] [INSPIRE].ADSMATHGoogle Scholar
  26. [26]
    H.E. Logan, Dark matter annihilation through a lepton-specific Higgs boson, Phys. Rev. D 83 (2011) 035022 [arXiv:1010.4214] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M.S. Boucenna and S. Profumo, Direct and indirect singlet scalar dark matter detection in the lepton-specific two-Higgs-doublet model, Phys. Rev. D 84 (2011) 055011 [arXiv:1106.3368] [INSPIRE].ADSGoogle Scholar
  28. [28]
    X.-G. He, B. Ren and J. Tandean, Hints of standard model Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, Two-Higgs-doublet-portal dark-matter model: LHC data and Fermi-LAT 135 GeV line, Phys. Rev. D 88 (2013) 015008 [arXiv:1212.5604] [INSPIRE].ADSGoogle Scholar
  30. [30]
    X.-G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at the LHC and darkon models, Phys. Rev. D 88 (2013) 013020 [arXiv:1304.6058] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Y. Cai and T. Li, Singlet dark matter in a type-II two Higgs doublet model, Phys. Rev. D 88 (2013) 115004 [arXiv:1308.5346] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, Nucl. Phys. B 898 (2015) 415 [arXiv:1401.5609] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    L. Wang and X.-F. Han, A simplified 2HDM with a scalar dark matter and the galactic center gamma-ray excess, Phys. Lett. B 739 (2014) 416 [arXiv:1406.3598] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Extending two-Higgs-doublet models by a singlet scalar field — the case for dark matter, JHEP 11 (2014) 105 [arXiv:1408.2106] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R. Campbell, S. Godfrey, H.E. Logan, A.D. Peterson and A. Poulin, Implications of the observation of dark matter self-interactions for singlet scalar dark matter, Phys. Rev. D 92 (2015) 055031 [arXiv:1505.01793] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals, JCAP 10 (2016) 040 [arXiv:1510.07053] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. von Buddenbrock et al., Phenomenological signatures of additional scalar bosons at the LHC, Eur. Phys. J. C 76 (2016) 580 [arXiv:1606.01674] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    C.-Y. Chen, M. Freid and M. Sher, Next-to-minimal two Higgs doublet model, Phys. Rev. D 89 (2014) 075009 [arXiv:1312.3949] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Djouadi, W. Kilian, M. Mühlleitner and P.M. Zerwas, Testing Higgs self-couplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].
  40. [40]
    A. Djouadi, W. Kilian, M. Mühlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].
  41. [41]
    M.M. Mühlleitner, Higgs particles in the standard model and supersymmetric theories, Ph.D. Thesis, Hamburg University (2000) [hep-ph/0008127] [INSPIRE].
  42. [42]
    P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak interaction breakdown induced by supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 INSPIRE].
  47. [47]
    J.P. Derendinger and C.A. Savoy, Quantum effects and SU(2) × U(1) breaking in supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322] [INSPIRE].
  51. [51]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Higgs phenomenology of the supersymmetric model with a gauge singlet, Z. Phys. C 67 (1995) 665 [hep-ph/9502206] [INSPIRE].
  52. [52]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251] [INSPIRE].
  53. [53]
    T. Elliott, S.F. King and P.L. White, Unification constraints in the next-to-minimal supersymmetric standard model, Phys. Lett. B 351 (1995) 213 [hep-ph/9406303] [INSPIRE].
  54. [54]
    S.F. King and P.L. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].
  55. [55]
    F. Franke and H. Fraas, Neutralinos and Higgs bosons in the next-to-minimal supersymmetric standard model, Int. J. Mod. Phys. A 12 (1997) 479 [hep-ph/9512366] [INSPIRE].
  56. [56]
    M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The new minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].
  59. [59]
    J.J. van der Bij, The minimal non-minimal standard model, Phys. Lett. B 636 (2006) 56 [hep-ph/0603082] [INSPIRE].
  60. [60]
    A. Datta and A. Raychaudhuri, Next-to-minimal Higgs: mass bounds and search prospects, Phys. Rev. D 57 (1998) 2940 [hep-ph/9708444] [INSPIRE].
  61. [61]
    R.M. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
  62. [62]
    O. Bahat-Treidel, Y. Grossman and Y. Rozen, Hiding the Higgs at the LHC, JHEP 05 (2007) 022 [hep-ph/0611162] [INSPIRE].
  63. [63]
    T. Robens and T. Stefaniak, Status of the Higgs singlet extension of the standard model after LHC Run 1, Eur. Phys. J. C 75 (2015) 104 [arXiv:1501.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    V. Barger, P. Langacker and G. Shaughnessy, Collider signatures of singlet extended Higgs sectors, Phys. Rev. D 75 (2007) 055013 [hep-ph/0611239] [INSPIRE].
  65. [65]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  66. [66]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [INSPIRE].ADSGoogle Scholar
  67. [67]
    D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].
  68. [68]
    R.S. Gupta and J.D. Wells, Higgs boson search significance deformations due to mixed-in scalars, Phys. Lett. B 710 (2012) 154 [arXiv:1110.0824] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    A. Ahriche, A. Arhrib and S. Nasri, Higgs phenomenology in the two-singlet model, JHEP 02 (2014) 042 [arXiv:1309.5615] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    R. Coimbra, M.O.P. Sampaio and R. Santos, ScannerS: constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].ADSGoogle Scholar
  73. [73]
    R. Costa, A.P. Morais, M.O.P. Sampaio and R. Santos, Two-loop stability of a complex singlet extended standard model, Phys. Rev. D 92 (2015) 025024 [arXiv:1411.4048] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R. Costa, M. Mühlleitner, M.O.P. Sampaio and R. Santos, Singlet extensions of the standard model at LHC Run 2: benchmarks and comparison with the NMSSM, JHEP 06 (2016) 034 [arXiv:1512.05355] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Wittbrodt, Phenomenological comparison of models with extended Higgs sectors, Master Thesis, Karlsruhe Institute of Technology (2016).Google Scholar
  76. [76]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
  77. [77]
    J.M. Butterworth et al., The Tools and Monte Carlo Working Group summary report from the Les Houches 2009 workshop on TeV Colliders, in Proceedings of the 6th Les Houches Workshop on Physics at TeV colliders, dedicated to Thomas Binoth, Les Houches France, 8-26 Jun 2009 [arXiv:1003.1643] [INSPIRE].
  78. [78]
    R. Costa, R. Guedes, M.O.P. Sampaio and R. Santos, ScannerS project (2014), http://scanners.hepforge.org.
  79. [79]
    J. Horejsi and M. Kladiva, Tree-unitarity bounds for THDM Higgs masses revisited, Eur. Phys. J. C 46 (2006) 81 [hep-ph/0510154] [INSPIRE].
  80. [80]
    K.G. Klimenko, Conditions for certain Higgs potentials to be bounded below, Theor. Math. Phys. 62 (1985) 58 [Teor. Mat. Fiz. 62 (1985) 87] [INSPIRE].
  81. [81]
    S.R. Coleman, Fate of the false vacuum: semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].
  82. [82]
    C.G. Callan Jr. and S.R. Coleman, Fate of the false vacuum. II. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].
  83. [83]
    P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].
  84. [84]
    H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].
  85. [85]
    O. Deschamps et al., The two Higgs doublet of type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].ADSGoogle Scholar
  86. [86]
    F. Mahmoudi and O. Stal, Flavor constraints on two-Higgs-doublet models with general diagonal Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].ADSGoogle Scholar
  87. [87]
    T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X}_s\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  90. [90]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  91. [91]
    Gfitter Group, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  92. [92]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  93. [93]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
  94. [94]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  96. [96]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: beyond NNLO and the heavy-top limit, Comput. Phys. Commun. 212 (2017) 239 [arXiv:1605.03190] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  98. [98]
    P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].ADSGoogle Scholar
  99. [99]
    P.M. Ferreira, R. Guedes, M.O.P. Sampaio and R. Santos, Wrong sign and symmetric limits and non-decoupling in 2HDMs, JHEP 12 (2014) 067 [arXiv:1409.6723] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    D. Fontes, J.C. Romão and J.P. Silva, Reappraisal of the wrong-sign \( hb\overline{b} \) coupling and the study of h, Phys. Rev. D 90 (2014) 015021 [arXiv:1406.6080] [INSPIRE].ADSGoogle Scholar
  101. [101]
    M. Krause, M. Mühlleitner, R. Santos and H. Ziesche, 2HDM Higgs-to-Higgs decays at next-to-leading order, arXiv:1609.04185 [INSPIRE].
  102. [102]
    A. Barroso, P.M. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models, Phys. Lett. B 652 (2007) 181 [hep-ph/0702098] [INSPIRE].
  103. [103]
    I.P. Ivanov, Minkowski space structure of the Higgs potential in the two-Higgs-doublet model. II. Minima, symmetries and topology, Phys. Rev. D 77 (2008) 015017 [arXiv:0710.3490] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Margarete Mühlleitner
    • 1
  • Marco O. P. Sampaio
    • 2
  • Rui Santos
    • 3
    • 4
  • Jonas Wittbrodt
    • 1
    • 5
  1. 1.Institute for Theoretical PhysicsKarlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Departamento de FísicaUniversidade de Aveiro and CIDMAAveiroPortugal
  3. 3.ISEL — Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de LisboaLisboaPortugal
  4. 4.Centro de Física Teórica e Computacional, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
  5. 5.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations