Constraining new physics with collider measurements of Standard Model signatures

  • Jonathan M. Butterworth
  • David Grellscheid
  • Michael Krämer
  • Björn Sarrazin
  • David Yallup
Open Access
Regular Article - Theoretical Physics
  • 60 Downloads

Abstract

A new method providing general consistency constraints for Beyond-the-Standard-Model (BSM) theories, using measurements at particle colliders, is presented. The method, ‘Constraints On New Theories Using Rivet’, Contur, exploits the fact that particle-level differential measurements made in fiducial regions of phase-space have a high degree of model-independence. These measurements can therefore be compared to BSM physics implemented in Monte Carlo generators in a very generic way, allowing a wider array of final states to be considered than is typically the case. The Contur approach should be seen as complementary to the discovery potential of direct searches, being designed to eliminate inconsistent BSM proposals in a context where many (but perhaps not all) measurements are consistent with the Standard Model. We demonstrate, using a competitive simplified dark matter model, the power of this approach. The Contur method is highly scaleable to other models and future measurements.

Keywords

Phenomenological Models QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
  5. [5]
    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    LHC New Physics Working Group collaboration, D. Alves, Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
  7. [7]
    D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, FERMILAB-PUB-15-282 [arXiv:1507.00966] [INSPIRE].
  8. [8]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Cranmer and I. Yavin, RECAST: Extending the Impact of Existing Analyses, JHEP 04 (2011) 038 [arXiv:1010.2506] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Barducci et al., Framework for Model Independent Analyses of Multiple Extra Quark Scenarios, JHEP 12 (2014) 080 [arXiv:1405.0737] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    C. Englert, M. McCullough and M. Spannowsky, S-Channel Dark Matter Simplified Models and Unitarity, Phys. Dark Univ. 14 (2016) 48 [arXiv:1604.07975] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  18. [18]
    CMS collaboration, Search for dark matter production in association with jets, or hadronically decaying W or Z boson at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-013 [INSPIRE].
  19. [19]
    J. Heisig, M. Krämer, M. Pellen and C. Wiebusch, Constraints on Majorana Dark Matter from the LHC and IceCube, Phys. Rev. D 93 (2016) 055029 [arXiv:1509.07867] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining Dark Sectors with Monojets and Dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Zmodels from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  23. [23]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P.J. Fox and C. Williams, Next-to-Leading Order Predictions for Dark Matter Production at Hadron Colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].ADSGoogle Scholar
  25. [25]
    U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Neubert, J. Wang and C. Zhang, Higher-Order QCD Predictions for Dark Matter Production in Mono-Z Searches at the LHC, JHEP 02 (2016) 082 [arXiv:1509.05785] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ATLAS collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at \( \sqrt{s}=7 \) TeV using 4.5 fb −1 of data with the ATLAS detector, JHEP 02 (2015) 153 [Erratum ibid. 09 (2015) 141] [arXiv:1410.8857] [INSPIRE].
  29. [29]
    CMS collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-k T algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 90 (2014) 072006 [arXiv:1406.0324] [INSPIRE].
  30. [30]
    ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP 05 (2014) 059 [arXiv:1312.3524] [INSPIRE].
  31. [31]
    ATLAS collaboration, Measurements of jet vetoes and azimuthal decorrelations in dijet events produced in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 74 (2014) 3117 [arXiv:1407.5756] [INSPIRE].
  32. [32]
    ATLAS collaboration, Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, Eur. Phys. J. C 75 (2015) 228 [arXiv:1411.1855] [INSPIRE].
  33. [33]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].
  34. [34]
    ATLAS collaboration, Measurement of four-jet differential cross sections in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, JHEP 12 (2015) 105 [arXiv:1509.07335] [INSPIRE].
  35. [35]
    ATLAS collaboration, Measurements of the W production cross sections in association with jets with the ATLAS detector, Eur. Phys. J. C 75 (2015) 82 [arXiv:1409.8639] [INSPIRE].
  36. [36]
    ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 07 (2013) 032 [arXiv:1304.7098] [INSPIRE].
  37. [37]
    CMS collaboration, Differential cross section measurements for the production of a W boson in association with jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 741 (2015) 12 [arXiv:1406.7533] [INSPIRE].
  38. [38]
    CMS collaboration, Measurements of jet multiplicity and differential production cross sections of Z+ jets events in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 91 (2015) 052008 [arXiv:1408.3104] [INSPIRE].
  39. [39]
    ATLAS collaboration, Measurement of ZZ production in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, JHEP 03 (2013) 128 [arXiv:1211.6096] [INSPIRE].
  40. [40]
    ATLAS collaboration, Measurements of Wγ and Zγ production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Rev. D 87 (2013) 112003 [arXiv:1302.1283] [INSPIRE].
  41. [41]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].
  42. [42]
    ATLAS collaboration, Measurement of the inclusive isolated prompt photons cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector using 4.6 fb −1, Phys. Rev. D 89 (2014) 052004 [arXiv:1311.1440] [INSPIRE].
  43. [43]
    ATLAS collaboration, Measurement of isolated-photon pair production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 01 (2013) 086 [arXiv:1211.1913] [INSPIRE].
  44. [44]
    ATLAS collaboration, Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 092014 [arXiv:1203.3161] [INSPIRE].
  45. [45]
    CMS collaboration, Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2014) 009 [arXiv:1311.6141] [INSPIRE].
  46. [46]
    ATLAS collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, Phys. Rev. D 93 (2016) 032009 [arXiv:1510.03818] [INSPIRE].
  47. [47]
    CMS collaboration, Measurement of the integrated and differential tt production cross sections for high-p t top quarks in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 94 (2016) 072002 [arXiv:1605.00116] [INSPIRE].
  48. [48]
    R. Garisto, Editorial: Theorists React To The CERN 750 GeV Diphoton Data, Phys. Rev. Lett. 116 (2016) 150001.ADSCrossRefGoogle Scholar
  49. [49]
    ATLAS collaboration, Search for resonances in diphoton events with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-018.
  50. [50]
    CMS collaboration, Search for new physics in high mass diphoton events in 3.3 fb −1 of proton-proton collisions at \( \sqrt{s}=13 \) TeV and combined interpretation of searches at 8 TeV and 13 TeV, CMS-PAS-EXO-16-018.
  51. [51]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  52. [52]
    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].
  53. [53]
    A.L. Read, Presentation of search results: The CL s technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    CMS collaboration, Measurement of the double-differential inclusive jet cross section in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 76 (2016) 451 [arXiv:1605.04436] [INSPIRE].
  55. [55]
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z′, JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Jonathan M. Butterworth
    • 1
  • David Grellscheid
    • 2
  • Michael Krämer
    • 3
  • Björn Sarrazin
    • 3
  • David Yallup
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonU.K.
  2. 2.IPPP, Department of PhysicsDurham UniversityDurhamU.K.
  3. 3.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany

Personalised recommendations