Phenomenological study of extended seesaw model for light sterile neutrino

  • Newton Nath
  • Monojit Ghosh
  • Srubabati Goswami
  • Shivani Gupta
Open Access
Regular Article - Theoretical Physics

Abstract

We study the zero textures of the Yukawa matrices in the minimal extended type-I seesaw (MES) model which can give rise to ∼ eV scale sterile neutrinos. In this model, three right handed neutrinos and one extra singlet S are added to generate a light sterile neutrino. The light neutrino mass matrix for the active neutrinos, m ν , depends on the Dirac neutrino mass matrix (M D ), Majorana neutrino mass matrix (M R ) and the mass matrix (M S ) coupling the right handed neutrinos and the singlet. The model predicts one of the light neutrino masses to vanish. We systematically investigate the zero textures in M D and observe that maximum five zeros in M D can lead to viable zero textures in m ν . For this study we consider four different forms for M R (one diagonal and three off diagonal) and two different forms of (M S ) containing one zero. Remarkably we obtain only two allowed forms of m ν (m = 0 and m ττ = 0) having inverted hierarchical mass spectrum. We re-analyze the phenomenological implications of these two allowed textures of m ν in the light of recent neutrino oscillation data. In the context of the MES model, we also express the low energy mass matrix, the mass of the sterile neutrino and the active-sterile mixing in terms of the parameters of the allowed Yukawa matrices. The MES model leads to some extra correlations which disallow some of the Yukawa textures obtained earlier, even though they give allowed one-zero forms of m ν . We show that the allowed textures in our study can be realized in a simple way in a model based on MES mechanism with a discrete Abelian flavor symmetry group Z 8 × Z 2.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Global Analyses of Neutrino Oscillation Experiments, Nucl. Phys. B 908 (2016) 199 [arXiv:1512.06856] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  3. [3]
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: Status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  5. [5]
    S. Mertens, Status of the katrin experiment and prospects to search for kev-mass sterile neutrinos in tritium β-decay, Physics Proc. 61 (2015) 267.ADSCrossRefGoogle Scholar
  6. [6]
    LSND collaboration, C. Athanassopoulos et al., Evidence for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations from the LSND experiment at LAMPF, Phys. Rev. Lett. 77 (1996) 3082 [nucl-ex/9605003] [INSPIRE].
  7. [7]
    LSND collaboration, C. Athanassopoulos et al., Evidence for nu μν e neutrino oscillations from LSND, Phys. Rev. Lett. 81 (1998) 1774 [nucl-ex/9709006] [INSPIRE].
  8. [8]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  9. [9]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., A Combined ν μν e and \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) Oscillation Analysis of the MiniBooNE Excesses, arXiv:1207.4809 [INSPIRE].
  10. [10]
    C. Giunti and M. Laveder, Statistical Significance of the Gallium Anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Mention, M. Fechner, T. Lasserre, T.A. Mueller, D. Lhuillier, M. Cribier et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [INSPIRE].
  13. [13]
    J. Kopp, M. Maltoni and T. Schwetz, Are there sterile neutrinos at the eV scale?, Phys. Rev. Lett. 107 (2011) 091801 [arXiv:1103.4570] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.M. Conrad, C.M. Ignarra, G. Karagiorgi, M.H. Shaevitz and J. Spitz, Sterile Neutrino Fits to Short Baseline Neutrino Oscillation Measurements, Adv. High Energy Phys. 2013 (2013) 163897 [arXiv:1207.4765] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    C. Giunti and M. Laveder, 3+1 and 3+2 Sterile Neutrino Fits, Phys. Rev. D 84 (2011) 073008 [arXiv:1107.1452] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.J. Gomez-Cadenas and M.C. Gonzalez-Garcia, Future tau-neutrino oscillation experiments and present data, Z. Phys. C 71 (1996) 443 [hep-ph/9504246] [INSPIRE].
  17. [17]
    S. Goswami, Accelerator, reactor, solar and atmospheric neutrino oscillation: Beyond three generations, Phys. Rev. D 55 (1997) 2931 [hep-ph/9507212] [INSPIRE].
  18. [18]
    M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Constraining neutrino oscillation parameters with current solar and atmospheric data, Phys. Rev. D 67 (2003) 013011 [hep-ph/0207227] [INSPIRE].
  19. [19]
    J. Hamann, S. Hannestad, G.G. Raffelt, I. Tamborra and Y.Y.Y. Wong, Cosmology seeking friendship with sterile neutrinos, Phys. Rev. Lett. 105 (2010) 181301 [arXiv:1006.5276] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Giusarma et al., Constraints on massive sterile neutrino species from current and future cosmological data, Phys. Rev. D 83 (2011) 115023 [arXiv:1102.4774] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E.J. Chun, A.S. Joshipura and A. Yu. Smirnov, QuasiGoldstone fermion as a sterile neutrino, Phys. Rev. D 54 (1996) 4654 [hep-ph/9507371] [INSPIRE].
  22. [22]
    J. Barry, W. Rodejohann and H. Zhang, Light Sterile Neutrinos: Models and Phenomenology, JHEP 07 (2011) 091 [arXiv:1105.3911] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  23. [23]
    C.-S. Chen and R. Takahashi, Hierarchically Acting Sterile Neutrinos, Eur. Phys. J. C 72 (2012) 2089 [arXiv:1112.2102] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. de Gouvêa, J. Jenkins and N. Vasudevan, Neutrino Phenomenology of Very Low-Energy Seesaws, Phys. Rev. D 75 (2007) 013003 [hep-ph/0608147] [INSPIRE].
  25. [25]
    P.S. Bhupal Dev and A. Pilaftsis, Light and Superlight Sterile Neutrinos in the Minimal Radiative Inverse Seesaw Model, Phys. Rev. D 87 (2013) 053007 [arXiv:1212.3808] [INSPIRE].ADSGoogle Scholar
  26. [26]
    H. Zhang, Light Sterile Neutrino in the Minimal Extended Seesaw, Phys. Lett. B 714 (2012) 262 [arXiv:1110.6838] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Heeck and H. Zhang, Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos, JHEP 05 (2013) 164 [arXiv:1211.0538] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    R. Allahverdi, B. Dutta and R.N. Mohapatra, Schizophrenic Neutrinos and ν-less Double Beta Decay, Phys. Lett. B 695 (2011) 181 [arXiv:1008.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A.C.B. Machado and V. Pleitez, Schizophrenic active neutrinos and exotic sterile neutrinos, Phys. Lett. B 698 (2011) 128 [arXiv:1008.4572] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Dev, S. Kumar, S. Verma and S. Gupta, Phenomenology of two-texture zero neutrino mass matrices, Phys. Rev. D 76 (2007) 013002 [hep-ph/0612102] [INSPIRE].
  31. [31]
    Z.-z. Xing, Texture zeros and Majorana phases of the neutrino mass matrix, Phys. Lett. B 530 (2002) 159 [hep-ph/0201151] [INSPIRE].
  32. [32]
    Z.-z. Xing, A Full determination of the neutrino mass spectrum from two zero textures of the neutrino mass matrix, Phys. Lett. B 539 (2002) 85 [hep-ph/0205032] [INSPIRE].
  33. [33]
    B.R. Desai, D.P. Roy and A.R. Vaucher, Three neutrino mass matrices with two texture zeros, Mod. Phys. Lett. A 18 (2003) 1355 [hep-ph/0209035] [INSPIRE].
  34. [34]
    S. Dev, S. Kumar, S. Verma and S. Gupta, CP violation in two texture zero neutrino mass matrices, Phys. Lett. B 656 (2007) 79 [arXiv:0708.3321] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Dev, S. Kumar, S. Verma and S. Gupta, Phenomenological implications of a class of neutrino mass matrices, Nucl. Phys. B 784 (2007) 103 [hep-ph/0611313] [INSPIRE].
  36. [36]
    S. Kumar, Implications of a class of neutrino mass matrices with texture zeros for non-zero θ 13, Phys. Rev. D 84 (2011) 077301 [arXiv:1108.2137] [INSPIRE].ADSGoogle Scholar
  37. [37]
    H. Fritzsch, Z.-z. Xing and S. Zhou, Two-zero Textures of the Majorana Neutrino Mass Matrix and Current Experimental Tests, JHEP 09 (2011) 083 [arXiv:1108.4534] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    D. Meloni and G. Blankenburg, Fine-tuning and naturalness issues in the two-zero neutrino mass textures, Nucl. Phys. B 867 (2013) 749 [arXiv:1204.2706] [INSPIRE].ADSMATHGoogle Scholar
  39. [39]
    P.O. Ludl, S. Morisi and E. Peinado, The Reactor mixing angle and CP-violation with two texture zeros in the light of T2K, Nucl. Phys. B 857 (2012) 411 [arXiv:1109.3393] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    W. Grimus and P.O. Ludl, Two-parameter neutrino mass matrices with two texture zeros, J. Phys. G 40 (2013) 055003 [arXiv:1208.4515] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Ghosh, S. Goswami and S. Gupta, Two Zero Mass Matrices and Sterile Neutrinos, JHEP 04 (2013) 103 [arXiv:1211.0118] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Ghosh, S. Goswami, S. Gupta and C.S. Kim, Implication of a vanishing element in the 3+1 scenario, Phys. Rev. D 88 (2013) 033009 [arXiv:1305.0180] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y. Zhang, Majorana neutrino mass matrices with three texture zeros and the sterile neutrino, Phys. Rev. D 87 (2013) 053020 [arXiv:1301.7302] [INSPIRE].ADSGoogle Scholar
  44. [44]
    N. Nath, M. Ghosh and S. Gupta, Understanding the masses and mixings of one-zero textures in 3 + 1 scenario, Int. J. Mod. Phys. A 31 (2016) 1650132 [arXiv:1512.00635] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Borah, M. Ghosh, S. Gupta, S. Prakash and S.K. Raut, Analysis of four-zero textures in the 3 + 1 neutrino framework, Phys. Rev. D 94 (2016) 113001 [arXiv:1606.02076] [INSPIRE].ADSGoogle Scholar
  46. [46]
    G.C. Branco, D. Emmanuel-Costa, M.N. Rebelo and P. Roy, Four Zero Neutrino Yukawa Textures in the Minimal Seesaw Framework, Phys. Rev. D 77 (2008) 053011 [arXiv:0712.0774] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Goswami and A. Watanabe, Minimal Seesaw Textures with Two Heavy Neutrinos, Phys. Rev. D 79 (2009) 033004 [arXiv:0807.3438] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Goswami, S. Khan and A. Watanabe, Hybrid textures in minimal seesaw mass matrices, Phys. Lett. B 693 (2010) 249 [arXiv:0811.4744] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Choubey, W. Rodejohann and P. Roy, Phenomenological consequences of four zero neutrino Yukawa textures, Nucl. Phys. B 808 (2009) 272 [Erratum ibid. B 818 (2009) 136] [arXiv:0807.4289] [INSPIRE].
  50. [50]
    L. Lavoura, New texture-zero patterns for lepton mixing, J. Phys. G 42 (2015) 105004 [arXiv:1502.03008] [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    R.M. Fonseca and W. Grimus, Classification of lepton mixing matrices from finite residual symmetries, JHEP 09 (2014) 033 [arXiv:1405.3678] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    W. Grimus, A.S. Joshipura, L. Lavoura and M. Tanimoto, Symmetry realization of texture zeros, Eur. Phys. J. C 36 (2004) 227 [hep-ph/0405016] [INSPIRE].
  53. [53]
    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].ADSGoogle Scholar
  54. [54]
    C. Giunti, Oscillations beyond three-neutrino mixing, talk given at Neutrino 2016, London, U.K., July 4–9, 2016.Google Scholar
  55. [55]
    T. Schwetz, Global oscillation fits with sterile neutrinos, talk given at Sterile Neutrino at the Crossroads, Virginia Tech, VA, U.S.A., September 25–28, 2011.Google Scholar
  56. [56]
    S. Goswami, S. Khan and W. Rodejohann, Minimal Textures in Seesaw Mass Matrices and their low and high Energy Phenomenology, Phys. Lett. B 680 (2009) 255 [arXiv:0905.2739] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Merle and W. Rodejohann, The Elements of the neutrino mass matrix: Allowed ranges and implications of texture zeros, Phys. Rev. D 73 (2006) 073012 [hep-ph/0603111] [INSPIRE].
  58. [58]
    E.I. Lashin and N. Chamoun, The One-zero Textures of Majorana Neutrino Mass Matrix and Current Experimental Tests, Phys. Rev. D 85 (2012) 113011 [arXiv:1108.4010] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R.R. Gautam, M. Singh and M. Gupta, Neutrino mass matrices with one texture zero and a vanishing neutrino mass, Phys. Rev. D 92 (2015) 013006 [arXiv:1506.04868] [INSPIRE].ADSGoogle Scholar
  60. [60]
    L. Lavoura, W. Rodejohann and A. Watanabe, Reproducing lepton mixing in a texture zero model, Phys. Lett. B 726 (2013) 352 [arXiv:1307.6421] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K. Harigaya, M. Ibe and T.T. Yanagida, Seesaw Mechanism with Occam’s Razor, Phys. Rev. D 86 (2012) 013002 [arXiv:1205.2198] [INSPIRE].ADSGoogle Scholar
  62. [62]
    A.S. Joshipura, Neutrino masses and mixing from flavour antisymmetry, JHEP 11 (2015) 186 [arXiv:1506.00455] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    A.S. Joshipura and N. Nath, Neutrino masses and mixing in A 5 with flavor antisymmetry, Phys. Rev. D 94 (2016) 036008 [arXiv:1606.01697] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T2K collaboration, K. Abe et al., Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 × 1020 protons on target, Phys. Rev. D 91 (2015) 072010 [arXiv:1502.01550] [INSPIRE].
  65. [65]
    T2K collaboration, M. Ravonel Salzgeber, Anti-neutrino oscillations with T2K, arXiv:1508.06153 [INSPIRE].
  66. [66]
    NOvA collaboration, P. Adamson et al., First measurement of electron neutrino appearance in NOvA, Phys. Rev. Lett. 116 (2016) 151806 [arXiv:1601.05022] [INSPIRE].
  67. [67]
    NOvA collaboration, P. Adamson et al., First measurement of muon-neutrino disappearance in NOvA, Phys. Rev. D 93 (2016) 051104 [arXiv:1601.05037] [INSPIRE].
  68. [68]
    CUORE collaboration, P. Gorla, The CUORE experiment: Status and prospects, J. Phys. Conf. Ser. 375 (2012) 042013 [INSPIRE].
  69. [69]
    J.F. Wilkerson et al., The Majorana demonstrator: A search for neutrinoless double-beta decay of germanium-76, J. Phys. Conf. Ser. 375 (2012) 042010 [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    A.S. Barabash, SeperNEMO double beta decay experiment, J. Phys. Conf. Ser. 375 (2012) 042012 [arXiv:1112.1784] [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    KamLAND-Zen collaboration, A. Gando et al., Limit on Neutrinoless ββ Decay of 136 Xe from the First Phase of KamLAND-Zen and Comparison with the Positive Claim in 76 Ge, Phys. Rev. Lett. 110 (2013) 062502 [arXiv:1211.3863] [INSPIRE].
  72. [72]
    EXO-200 collaboration, M. Auger et al., Search for Neutrinoless Double-Beta Decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].
  73. [73]
    Daya Bay collaboration, F.P. An et al., Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment, Phys. Rev. Lett. 117 (2016) 151802 [arXiv:1607.01174] [INSPIRE].
  74. [74]
    IceCube collaboration, M.G. Aartsen et al., Searches for Sterile Neutrinos with the IceCube Detector, Phys. Rev. Lett. 117 (2016) 071801 [arXiv:1605.01990] [INSPIRE].
  75. [75]
    MINOS collaboration, P. Adamson et al., Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS, Phys. Rev. Lett. 117 (2016) 151803 [arXiv:1607.01176] [INSPIRE].
  76. [76]
    MINOS, Daya Bay collaboration, P. Adamson et al., Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay and Bugey-3 Experiments, Phys. Rev. Lett. 117 (2016) 151801 [arXiv:1607.01177] [INSPIRE].
  77. [77]
    W. Grimus and L. Lavoura, The Seesaw mechanism at arbitrary order: Disentangling the small scale from the large scale, JHEP 11 (2000) 042 [hep-ph/0008179] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Newton Nath
    • 1
    • 2
  • Monojit Ghosh
    • 3
  • Srubabati Goswami
    • 1
  • Shivani Gupta
    • 4
  1. 1.Physical Research LaboratoryAhmedabadIndia
  2. 2.Indian Institute of TechnologyAhmedabadIndia
  3. 3.Department of PhysicsTokyo Metropolitan UniversityTokyoJapan
  4. 4.Center of Excellence for Particle Physics (CoEPP)University of AdelaideAdelaideAustralia

Personalised recommendations