All (4,1): Sigma models with (4, q) off-shell supersymmetry

Open Access
Regular Article - Theoretical Physics

Abstract

Off-shell (4, q) supermultiplets in 2-dimensions are constructed for q = 1, 2, 4. These are used to construct sigma models whose target spaces are hyperkähler with torsion. The off-shell supersymmetry implies the three complex structures are simultaneously integrable and allows us to construct actions using extended superspace and projective superspace, giving an explicit construction of the target space geometries.

Keywords

Extended Supersymmetry Superspaces 

References

  1. [1]
    S.J. Gates, Jr., C.M. Hull and M. Roček, Twisted multiplets and new supersymmetric nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    C.M. Hull and E. Witten, Supersymmetric σ-models and the heterotic string, Phys. Lett. B 160 (1985) 398 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C.M. Hull, Lectures on nonlinear sigma models and strings, lectures given at the Vancouver Advanced Research Workshop, published in Super Field Theories, H. Lee and G. Kunstatter eds., Plenum, New York U.S.A. (1988).Google Scholar
  4. [4]
    P.S. Howe and G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ models, Class. Quant. Grav. 5 (1988) 1647 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    K. Yano and M. Ako, Integrability conditions for almost quaternion structures, Hokkaido Math. J. 1 (1972) 63.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    M. Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Jap. J. Math. 26 (1956) 43.MathSciNetMATHGoogle Scholar
  7. [7]
    K. Yano and M. Ako, An affine connection in an almost quaternion manifold, J. Diff. Geom. 8 (1973) 341.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler manifolds and off-shell supersymmetry, Commun. Math. Phys. 269 (2007) 833 [hep-th/0512164] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    U. Lindström and M. Roček, New hyper-Kähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  11. [11]
    T. Buscher, U. Lindström and M. Roček, New supersymmetric σ models with Wess-Zumino terms, Phys. Lett. B 202 (1988) 94 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    U. Lindström, I.T. Ivanov and M. Roček, New N = 4 superfields and σ-models, Phys. Lett. B 328 (1994) 49 [hep-th/9401091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström and R. von Unge, Feynman rules in N = 2 projective superspace: 1. Massless hypermultiplets, Nucl. Phys. B 516 (1998)426 [hep-th/9710250] [INSPIRE].
  15. [15]
    U. Lindström and M. Roček, Properties of hyper-Kähler manifolds and their twistor spaces, Commun. Math. Phys. 293 (2010) 257 [arXiv:0807.1366] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
  17. [17]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Harmonic superspace and extended supersymmetries, in the proceedings of the Third Yurmala Seminar, May 22–24, Yurmala, Latvia (1985).Google Scholar
  18. [18]
    F. Delduc, S. Kalitsyn and E. Sokatchev, Geometry of σ models with heterotic sypersymmetry, Class. Quant. Grav. 7 (1990) 1567 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    A.S. Galperin et al., Harmonic superspace, Cambridge University Press, Cambridge U.K. (2001).CrossRefMATHGoogle Scholar
  20. [20]
    P.S. Howe and G.G. Hartwell, A superspace survey, Class. Quant. Grav. 12 (1995) 1823 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    G.G. Hartwell and P.S. Howe, (N, p, q) harmonic superspace, Int. J. Mod. Phys. A 10 (1995) 3901 [hep-th/9412147] [INSPIRE].
  22. [22]
    S.M. Kuzenko, Lectures on nonlinear σ-models in projective superspace, J. Phys. A 43 (2010) 443001 [arXiv:1004.0880] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  23. [23]
    M. Abou Zeid and C.M. Hull, The gauged (2, 1) heterotic σ-model, Nucl. Phys. B 513 (1998) 490 [hep-th/9708047] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    C.M. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    E. Ivanov and A. Sutulin, Diversity of off-shell twisted (4, 4) multiplets in SU(2) × SU(2) harmonic superspace, Phys. Rev. D 70 (2004) 045022 [hep-th/0403130] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    M. Goteman, U. Lindström, M. Roček and I. Ryb, σ-models with off-shell N = (4, 4) supersymmetry and noncommuting complex structures, JHEP 09 (2010) 055 [arXiv:0912.4724] [INSPIRE].
  27. [27]
    C. Hull, U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler geometry in (2, 1) superspace, JHEP 06 (2012) 013 [arXiv:1202.5624] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Brendle, On the conformal scalar curvature equation and related problems, Surv. DIff. Geom. 12 (2007) 1 [arXiv:0802.0295].MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    E.A. Ivanov, On the harmonic superspace geometry of (4, 4) supersymmetric σ-models with torsion, Phys. Rev. D 53 (1996) 2201 [hep-th/9502073] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    M. Dine and N. Seiberg, (2, 0) superspace, Phys. Lett. B 180 (1986) 364 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.The Blackett LaboratoryImperial College LondonLondonU.K.
  2. 2.Department of Physics and Astronomy, Division of Theoretical PhysicsUppsala UniversityUppsalaSweden

Personalised recommendations