Advertisement

SU(5) unification with TeV-scale leptoquarks

  • Peter CoxEmail author
  • Alexander Kusenko
  • Olcyr Sumensari
  • Tsutomu T. Yanagida
Open Access
Regular Article - Theoretical Physics

Abstract

It was previously noted that SU(5) unification can be achieved via the simple addition of light scalar leptoquarks from two split 10 multiplets. We explore the parameter space of this model in detail and find that unification requires at least one leptoquark to have mass below ≈ 16 TeV. We point out that introducing splitting of the 24 allows the unification scale to be raised beyond 1016 GeV, while a U(1)PQ symmetry can be imposed to forbid dangerous proton decay mediated by the light leptoquarks. The latest bounds from LHC searches are combined and we find that a leptoquark as light as 400 GeV is still permitted. Finally, we discuss the interesting possibility that the leptoquarks required for unification could also be responsible for the 2.6σ deviation observed in the ratio R K at LHCb.

Keywords

Beyond Standard Model GUT 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.R. Ellis and M.K. Gaillard, Fermion Masses and Higgs Representations in SU(5), Phys. Lett. B 88 (1979) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  5. [5]
    T. Yanagida, Horizontal Symmetry And Masses Of Neutrinos, in proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, 13–14 February 1979 [Conf. Proc. C 7902131 (1979) 95] [INSPIRE].
  6. [6]
    S.L. Glashow, The Future of Elementary Particle Physics, in proceedings of the Cargèse Summer Institute: Quarks and Leptons, Cargèse, France, 9–29 July 1979 [NATO Sci. Ser. B 61 (1980) 687] [INSPIRE].
  7. [7]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, in proceedings of the Supergravity Workshop, Stony Brook, New York, U.S.A., 27–28 September 1979 [Conf. Proc. C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE].
  8. [8]
    H. Murayama and T. Yanagida, A viable SU(5) GUT with light leptoquark bosons, Mod. Phys. Lett. A 7 (1992) 147 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett. B 271 (1991) 138 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    I. Dorsner and P. Fileviez Perez, Unification without supersymmetry: Neutrino mass, proton decay and light leptoquarks, Nucl. Phys. B 723 (2005) 53 [hep-ph/0504276] [INSPIRE].
  11. [11]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].
  12. [12]
    P. Fileviez Perez and C. Murgui, Renormalizable SU(5) Unification, Phys. Rev. D 94 (2016) 075014 [arXiv:1604.03377] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Bečirević, S. Fajfer and N. Košnik, Lepton flavor nonuniversality in bsℓ + processes, Phys. Rev. D 92 (2015) 014016 [arXiv:1503.09024] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Hiller and M. Schmaltz, R K and future bsℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Ghosh, M. Nardecchia and S.A. Renner, Hint of Lepton Flavour Non-Universality in B Meson Decays, JHEP 12 (2014) 131 [arXiv:1408.4097] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R}_{D^{\left(*\right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    F.F. Deppisch, S. Kulkarni, H. Päs and E. Schumacher, Leptoquark patterns unifying neutrino masses, flavor anomalies and the diphoton excess, Phys. Rev. D 94 (2016) 013003 [arXiv:1603.07672] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Arnan, L. Hofer, F. Mescia and A. Crivellin, Loop effects of heavy new scalars and fermions in b + μ , arXiv:1608.07832 [INSPIRE].
  21. [21]
    D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].ADSGoogle Scholar
  22. [22]
    G. Hiller, D. Loose and K. Schönwald, Leptoquark Flavor Patterns & B Decay Anomalies, JHEP 12 (2016) 027 [arXiv:1609.08895] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Barbieri, C.W. Murphy and F. Senia, B-decay Anomalies in a Composite Leptoquark Model, Eur. Phys. J. C 77 (2017) 8 [arXiv:1611.04930] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Bachas, C. Fabre and T. Yanagida, Natural gauge coupling unification at the string scale, Phys. Lett. B 370 (1996) 49 [hep-th/9510094] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Murayama, Y. Okada and T. Yanagida, The Georgi-Jarlskog mass relation in a supersymmetric grand unified model, Prog. Theor. Phys. 88 (1992) 791 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  28. [28]
    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].
  29. [29]
    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
  31. [31]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  32. [32]
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    K. Abe et al., Letter of Intent: The Hyper-Kamiokande Experiment — Detector Design and Physics Potential —, arXiv:1109.3262 [INSPIRE].
  34. [34]
    J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev. D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].ADSGoogle Scholar
  35. [35]
    V.I. Tretyak and Y.G. Zdesenko, Experimental limits on the proton lifetime from the neutrino experiments with heavy water, Phys. Lett. B 505 (2001) 59 [nucl-ex/0104011] [INSPIRE].
  36. [36]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    P. Fileviez Perez, Fermion mixings versus D = 6 proton decay, Phys. Lett. B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].
  38. [38]
    Y. Aoki, E. Shintani and A. Soni, Proton decay matrix elements on the lattice, Phys. Rev. D 89 (2014) 014505 [arXiv:1304.7424] [INSPIRE].ADSGoogle Scholar
  39. [39]
    ATLAS collaboration, A search for pair produced resonances in four jets final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, ATLAS-CONF-2016-084 (2016) [INSPIRE].
  40. [40]
    Super-Kamiokande collaboration, H. Nishino et al., Search for Nucleon Decay into Charged Anti-lepton plus Meson in Super-Kamiokande I and II, Phys. Rev. D 85 (2012) 112001 [arXiv:1203.4030] [INSPIRE].
  41. [41]
    I. Dorsner and P. Fileviez Perez, How long could we live?, Phys. Lett. B 625 (2005) 88 [hep-ph/0410198] [INSPIRE].
  42. [42]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  43. [43]
    G. Hiller and F. Krüger, More model independent analysis of bs processes, Phys. Rev. D 69 (2004) 074020 [hep-ph/0310219] [INSPIRE].
  44. [44]
    M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for R K and R K *, Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub and M. Wick, Symmetries and Asymmetries of BK * μ + μ Decays in the Standard Model and Beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    LHCb and CMS collaborations, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  48. [48]
    LHCb collaboration, Differential branching fractions and isospin asymmetries of BK (*) μ + μ decays, JHEP 06(2014)133 [arXiv:1403.8044] [INSPIRE].
  49. [49]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, arXiv:1607.00299 [INSPIRE].
  50. [50]
    J.A. Bailey et al., BKl + l decay form factors from three-flavor lattice QCD, Phys. Rev. D 93 (2016) 025026 [arXiv:1509.06235] [INSPIRE].ADSGoogle Scholar
  51. [51]
    HPQCD collaboration, C. Bouchard, G.P. Lepage, C. Monahan, H. Na and J. Shigemitsu, Rare decay BKℓ + form factors from lattice QCD, Phys. Rev. D 88 (2013) 054509 [Erratum ibid. D 88 (2013) 079901] [arXiv:1306.2384] [INSPIRE].
  52. [52]
    G. Hiller and M. Schmaltz, Diagnosing lepton-nonuniversality in bsℓℓ, JHEP 02 (2015) 055 [arXiv:1411.4773] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive bsℓ 1 2 modes, JHEP 11 (2016) 035 [arXiv:1608.07583] [INSPIRE].Google Scholar
  54. [54]
    ATLAS collaboration, Search for scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS experiment, New J. Phys. 18 (2016) 093016 [arXiv:1605.06035] [INSPIRE].
  55. [55]
    CMS collaboration, Search for pair-production of first generation scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with 2.6 fb −1, CMS-PAS-EXO-16-043 (2016) [INSPIRE].
  56. [56]
    CMS collaboration, Search for pair-production of second-generation scalar leptoquarks in pp collisions at \( \sqrt{s}=13 \) TeV with the CMS detector, CMS-PAS-EXO-16-007 (2016) [INSPIRE].
  57. [57]
    CMS collaboration, Search for heavy neutrinos or third-generation leptoquarks in final states with two hadronically decaying tau leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, submitted to JHEP (2016) [arXiv:1612.01190] [INSPIRE].
  58. [58]
    CMS collaboration, Search for the third-generation scalar leptoquarks and heavy right-handed neutrinos in τ τ h jj final states in pp collisions at 13 TeV, CMS-PAS-EXO-16-023 (2016) [INSPIRE].
  59. [59]
    ATLAS collaboration, Searches for scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 5 [arXiv:1508.04735] [INSPIRE].
  60. [60]
    CMS collaboration, Search for heavy neutrinos and third-generation leptoquarks in final states with two hadronically decaying τ leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-016 (2016) [INSPIRE].

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIASThe University of TokyoKashiwaJapan
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesU.S.A.
  3. 3.Laboratoire de Physique Théorique, CNRS, Université Paris-Sud, Université Paris-SaclayOrsayFrance
  4. 4.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations