Advertisement

Orbifold reduction and 2d (0,2) gauge theories

  • Sebastián Franco
  • Sangmin Lee
  • Rak-Kyeong Seong
Open Access
Regular Article - Theoretical Physics

Abstract

We introduce Orbifold Reduction, a new method for generating 2d (0, 2) gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from 4d \( \mathcal{N}=1 \) gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating 2d (0, 2) theories with a brane realization. We present three practical applications of the new algorithm: the connection between 4d Seiberg duality and 2d triality, a combinatorial method for generating theories related by triality and a 2d (0, 2) generalization of the Klebanov-Witten mass deformation.

Keywords

Brane Dynamics in Gauge Theories D-branes Supersymmetric gauge theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Mohri, D-branes and quotient singularities of Calabi-Yau fourfolds, Nucl. Phys. B 521 (1998) 161 [hep-th/9707012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Garcia-Compean and A.M. Uranga, Brane box realization of chiral gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329 [hep-th/9806177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Tatar, Geometric constructions of two dimensional (0, 2) SUSY theories, Phys. Rev. D 92 (2015) 045006 [arXiv:1506.05372] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Schäfer-Nameki and T. Weigand, F-theory and 2d (0, 2) theories, JHEP 05 (2016) 059 [arXiv:1601.02015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, UV completions for non-critical strings, JHEP 07 (2016) 045 [arXiv:1602.04221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) quiver gauge theories and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models, toric Calabi-Yau 4-folds and 2d (0, 2) quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].
  10. [10]
    S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP 05 (2016) 020 [arXiv:1602.01834] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane brick models in the mirror, arXiv:1609.01723 [INSPIRE].
  12. [12]
    B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Futaki and K. Ueda, Tropical Coamoeba and torus-equivariant homological mirror symmetry for the projective space, Commun. Math. Phys. 332 (2014) 53 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].
  15. [15]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Franco, Bipartite field theories: from D-brane probes to scattering amplitudes, JHEP 11 (2012) 141 [arXiv:1207.0807] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    F. Benini, D.S. Park and P. Zhao, Cluster algebras from dualities of 2D \( \mathcal{N}=\left(2,2\right) \) quiver gauge theories, Commun. Math. Phys. 340 (2015) 47 [arXiv:1406.2699] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Gadde, S.S. Razamat and B. Willett, On the reduction of 4d \( \mathcal{N}=1 \) theories on \( {\mathbb{S}}^2 \), JHEP 11 (2015) 163 [arXiv:1506.08795] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    S. Benvenuti, S. Franco, A. Hanany, D. Martelli and J. Sparks, An infinite family of superconformal quiver gauge theories with Sasaki-Einstein duals, JHEP 06 (2005) 064 [hep-th/0411264] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    C.P. Herzog, Q.J. Ejaz and I.R. Klebanov, Cascading RG flows from new Sasaki-Einstein manifolds, JHEP 02 (2005) 009 [hep-th/0412193] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Benvenuti, A. Hanany and P. Kazakopoulos, The toric phases of the Y p,q quivers, JHEP 07 (2005) 021 [hep-th/0412279] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Bianchi et al., Mass-deformed brane tilings, JHEP 10 (2014) 27 [arXiv:1408.1957] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Quadrality for supersymmetric matrix models, arXiv:1612.06859 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sebastián Franco
    • 1
    • 2
  • Sangmin Lee
    • 3
    • 4
    • 5
  • Rak-Kyeong Seong
    • 6
  1. 1.Physics DepartmentThe City College of the CUNYNew YorkU.S.A.
  2. 2.The Graduate School and University CenterThe City University of New YorkNew YorkU.S.A.
  3. 3.Center for Theoretical PhysicsSeoul National UniversitySeoulKorea
  4. 4.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  5. 5.College of Liberal StudiesSeoul National UniversitySeoulKorea
  6. 6.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations